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This work is trying to introduce a fractional order floated pole controller as a fast and 

robust approach. We designed a robust variable structure control that yields a continuous 

and constrained control signal, also a fast response in the presence of model uncertainties 

and external disturbances. In the proposed controller, we employed the pole placement 

algorithm, then by designing proper polynomials gave it robust property, then due to a 

simple optimization routine, we make it fast and faster within the stability region. Finally, 

to evaluate the proposed method, numerical examples in different situations of the 

presence of noise, disturbance, and model uncertainties, also comparative results are 

presented. This paper proposed an accurate, fast, and robust controller. This can improve 

the performance of the perturbed functional systems used in the industrial fields. It is 

proposed to spread the benefit of fractional calculus in the control of complex systems in 

practical situations.  

 

NOMENCLATURE AND SYMBOLS  

𝑞𝑛 Commensurate fractional order PID Proportional-Integral-Derivative 

𝐸𝛼,𝛽(𝑧) Mittag-Leffler function VSC Variable Structure Control 

Γ(. ) Gamma function SMC Sliding-Mode Control 

𝜁 Time scale factor SVSC Soft Variable Structure Control 

𝜁0 Maximum time scale factor FPID Fractional PID  

𝛼𝑘 characteristic ratios CRA Characteristic Ratio Assignment 

𝐿{. } Laplace transform PPC Pole Placement Controller 

FC Fractional Calculus TSMC Terminal Sliding-Mode Control 

FO Fractional Order  FSMC Fractional-order Sliding-Mode Control 

FOS Fractional-Order System FO-PPC Fractional Order Pole Placement Controller 
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I. Introduction 

A. Background 

The main goals of each control system are to achieve the 

appropriate speed and accuracy. Besides, the control systems 

demanded to be used in the industry suffer from degradation 

caused by model uncertainties and external disturbances. In 

this manuscript, with the benefit of recent findings on two 

wings Fractional Calculus (FC) and Variable Structure Control 

(VSC), we are to propose an accurate, fast, and robust 

controller. This can improve the performance of the perturbed 

functional  systems; robust control provides a reliable base for 

future smart systems.  

B. Literature review 

As the first wing, in this work the FC is used to spread the 

benefit of FC in control of complex systems; moreover, the 

advantage of using FC in real application has been proven in 

recent research [1]. FC is the generalization of Integer-Order 

(IO) differentiation to Fractional-Order (FO) ones. It has a long 

history in mathematics, and today enhancing both transient and 

steady-state responses of the closed-loop performance is 

confirmed. Furthermore, FO controllers can make a very 

important role in robust systems against model uncertainties 

and disturbances [1, 2]. Fractional-order (FO) controllers offer 

greater flexibility in robustness that can only be achieved with 

high-order IO controllers [2]. Using FC in robust control can 

make a remarkable improvement compared to the 

conventional IO control [3]. In [4], an optimal approach for a 

fractional-order PID controller proposes to control electrical 

autonomous cars. In [5] the fractional-order PID controller in 

a combination of the type-2 fuzzy logic is developed for 

efficient and robust control of seismic systems. PID control as 

a common form of industrial control is faced limitations like 

uncertainties and parameter variations. Using FC in PID first 

proposed by Podlubny, and gives more efficiency in 

robustness of the system against gain variations [6, 7]. Sliding-

Mode Control (SMC) as another traditional robust control 

strategy experiences chattering phenomenon, because of the 

switching non-linearity [8-10]. In [8], a model-free adaptive 

SMC is designed for control of input saturated chaotic systems. 

In [9] a fractional-order sliding mode controller is improved 

considering the estimated disturbance output. SMC uses a 

linear hyperplane as the sliding surface. In [10] a non-linear 

sliding mode observer is used to compensate cyber-attack and 

load disturbance in smart power systems. However, these 

control methods ensure asymptotic convergence of the system 

states to the equilibrium point, but there is no guarantee in 

finite-time. For a better robust control, the modified versions 

of SMC are used; like Higher-Order Sliding Mode Control, 

Terminal Sliding Mode Control (TSMC), etc... [11]. In [12] 

neural network-based TSMC is mentioned for control of the 

on-holonomic spherical robot. A deep recurrent neural 

networks with TSMC for a chaotic fractional-order financial 

system is proposed in [13]. Chattering is discussed still as a 

challenge in TSMC. Fuzzy and neural network approaches is 

used in SMC it’s modified versions to enhance the robustness 

of systems [14]. In addition, using FC in SMC preserve all the 

advantages of SMC and additionally, can reduce chattering 

and to improve the robustness of the system. In [15] a new 

design of robust fractional adaptive decoupled control on a 

parallel micropositioning piezostage is proposed that contains 

three intuitional terms. A feedback model reference adaptive 

control term with fractional updating rules that represses the 

creep effect, external disturbances and parameters uncertainty, 

further increases the robustness and accuracy of positioning. 

However, this work assumes the prior knowledge of the upper 

bound of the system uncertainty. First use of fractional order 

control (FOC) in power electronics is mentioned in [16]. A 

new robust fractional-order super-twisting sliding mode 

control for supercapacitor-based power supply is proposed in 

[17]. As the chattering-free design of the controller, a robust, 

steady and smooth DC voltage can be provided. Also, this 

controller requires prior knowledge of the upper bound of 

system uncertainty.  

On the second wing, VSC as an effective way to achieving 

the least  settling time is performed. In VSC the control 

decision switches between n designed control way to achieve 

short settling times [18]. However, high frequency pattern 

switching in VSC is not desirable in industrial applications. So 

Soft Variable Structure Control (SVSC) introduced through 

increasing the number of predesigned structures to infinity in 

order to the selecting control function becomes continuous [18, 

19]. But, because of the lack of robustness discussion, there is 

no reliability in the operational use of multitude of theatrical 

systems in the industrial environment. 

C. Research gap and motivation 

With an increasingly understanding of the potential of FOC, 

the number of studies and applications is increasing. However, 

by summarizing the current research results, it can be found 

that the research on this field is still at a preliminary stage. Our 

try is to develop a new control strategy for FO systems and 

help to complement the exploitation of the applications of FOS 

in modeling and controlling complex physical phenomena.  

D. Challenges 

To overcome the problem of disturbances in practice, 

applying FOC in variable structure schema is on the agenda; 

we are to solve the problems of modification of the RST 

control structure [19] with proper polynomials that guarantees 

the robustness of system, and propose a routine to vary the 

control signal continuously in a limited frame. The challenge 

relevant between velocity and parameters of the controller is 

adjusted by the Characteristic Ratio Assignment (CRA) 

method [20] in the FO pole placement algorithm [21]. The 

proposed VSC is to have a stable and robust control system, 
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with quick response, soft and restricted control signal.  

E. Contribution 

The contributions and novelties of the work are summarized 

as follows: 

• The presented SVSC approach is raised in FO systems; 

compared with SVSC in [18] that are integer-order. 

• The variable structure property of the proposed scheme, 

compared to fixed structure control in [22, 23], carries out 

a faster response, robust and stable control system, with a 

smooth and restricted control signal.  

• In comparison with [19] that uses PSO, in this paper in 

order to decrease computational effort, a new simple and 

stable procedure for changing the parameters of the 

controller is proposed.  

• In comparison with [19], system the robust performance 

and robust stability against external disturbances and 

model uncertainties is guaranteed.  

F. Paper organization 

This paper is organized as follows. In section 2 the 

procedure of the proposed SVSC is reviewed. Section 3 

contains the stability and robustness discussion of the proposed 

control schema. Section 4 presents the simulations to validate 

the efficiency of the control system. Section 5 is dedicated to 

concluding remarks. 

 

II. The proposed control scheme  

To introduce the new proposed control scheme, we divided 

the dissection  in four subsections: RST control structure, 

generalization to FO, desired commensurate system, and 

the SVSC approach. 

A. RST control structure 

The RST control structure is employed as a Pole Placement 

Controller (PPC) [20]. 

If we consider the system 𝐺  and desired system 𝐺𝑚  as 

follow: 
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Where 𝑎𝑖 , 𝑏𝑖 , 𝑝𝑖 , 𝑞𝑖  𝜖 𝑅, 0 < 𝑞1 < 𝑞2 < ⋯ < 𝑞𝑛 and 0 < 𝑝1 <

𝑝2 < ⋯ < 𝑝𝑚. Also, 𝑎′𝑖 , 𝑏′𝑖 , 𝑝′𝑖 , 𝑞′𝑖  𝜖 𝑅, 0 < 𝑞′1 < 𝑞′2 < ⋯ <

𝑞′𝑛 and  0 < 𝑝′1 < 𝑝′2 < ⋯ < 𝑝′𝑚. Am is the desired 

characteristics polynomial and the Ac is closed loop 

characteristics polynomial from Diophantine equation: 
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Fig 1. The RST control system 
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The controller polynomials R, S and T will be derived from (3) 

and (4). 

B. Generalized FO-PPC 

To generalize the RST method to FO-systems, at first, we 

make an integer-order reflection of FO polynomial. Therefore 

in polynomials, the minimum common resolution (𝑞𝑛) will be 

chosen and substituted by 𝛿. Second, the RST-based PPC will 

be applied to the reflective transfer functions [22]. 
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The Diophantine equations (3 and 4) and Re-reflecting, give 

the S, R, and T, in FO form. By this design, the closed loop 

poles are directed to desired. Also, removing unstable zeros 

and poles is avoided. 

C. Desired commensurate system 

Because of the high-order nature of FOS, the velocity-

parameters relation is adjusted by the CRA. According to CRA 

and Laplace scaling property, the response of closed loop 

systems (8), is ξ-times faster than the response systems (7) and 

the overshoots are the same. 
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Where 𝑞 is commensurate fractional order. 

D. The SVSC approach 

In the non-variable structure controller, the amplitudes of 

states decrease during the control period, so if we can modify 

the parameters of the controller during a control clock most 

capabilities of the control system can be used and earn a faster 

controller. Based on the proposed SVSC approach, at first, a 

FO-PPC will be designed; then the time-scaling factor ξ will 

be large and larger in the stability framework and constraint of 

the control signal. Changes in the controller’s parameters make 

the system faster while the overall system is stable, the control 

signal is limited, and since the number of changes in the 
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controller decreases to infinity, the control signal is smooth. 

In our proposed method, after shaping the FO-PPC, we try 

Increase 𝜉  in 𝐺𝑚(𝑠,𝜉)  by consideration the following 

conditions: 

𝜉𝑖 > 𝜉0 > 0 

|𝑟
𝐺𝑓𝑓

1 − 𝐺𝐺𝑐

| − |𝑢𝑚𝑎𝑥| ≤ 0 

|𝜉𝑖 − 𝜉𝑖−1| ≤ 𝑁|𝑥(𝑡)| 

 (9) 

Where N is a positive constant. We have 𝜉𝑖 = 𝜉𝑖−1 + 𝑁𝑥(𝑡) 

and if the condition (9) is not fulfilled in the increase 𝜉, then 

𝜉𝑖 = 𝜉𝑖−1 − 𝑠𝐷𝑥(𝑡) until establishment of (9). 𝑠𝐷 is a positive 

constant. So we get the biggest time-scaling factor 𝜉,  the 

desired commensurate system will be reshape in each control 

period 𝑖 , and by applying the controller the overall system 

were faster and faster. 

 

III. Stability, sensitivity and robustness  

In this section, the stability discussion of the system is 

provided in subsections on internal and overall time-variant 

system stability. Also, the sensitivity and robustness of the 

proposed system against external disturbances, noise, and 

model uncertainties is interpreted. 

 

A. Internal stability 

 In order to have internal stability and model following 

condition, BT and Ac have to have no common factor in in 

Diophantine equations (3, 4). So we separate polynomial B 

into B+ and B− as stable and an unstable part (10). The unstable 

poles of B− cannot be canceled and it can cause instability 

problem; to overcome this problem, we can consider B−as a 

part of 𝐵𝑚 (11). And, B+ should be a common factor in Ac and 

R (12, 13). 

  B B B− +=   (10) 

m m
B B B− =   (11) 

R R B +=   (12) 

0
. .

c m
A A A B +=   (13) 

Where A0 is the residual part poles. Therefore, the Diophantine 

equation is reduced as bellows. 

0 m
AR B S A A− + =   (14) 

Also, about T we will have 

0 m
T A B =   (15). 

 

 

B. Time-variant system stability 

Changing the controller parameters during every control clock 

leads the proposed controller to a FO time-variant system. We 

consider the proposed SVSC as the following system. 

( ) ( ) ( ) ( ) ( ) ( )
d

x t A t x t x t A t tA x
dt
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
= = +   

   (16) 

Where 𝑥(𝑡) ∈ 𝑅𝑛  is the system state vector, 𝐴̃(𝑡) ∈ 𝑅𝑛×𝑛 is 

system equivalent matrix. The VSC approach produces the 

time-variant portion , ∆𝐴(𝑡) ∈ 𝑅𝑛×𝑛, the , 𝐴̅(𝑡) ∈ 𝑅𝑛×𝑛 is a 

constant matrix, and 0 < 𝛼 < 2 is fractional order 

In the following, before presenting the main theory of stability 

of the studied system, it is necessary to mention some 

definitions and lemmas. 

Definition 1: The α-order Caputo derivative of function ℎ(𝑡) 

is defined as (17), and its Laplace transform at 𝑡0 = 0  is 

written as (19) [1]. 
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Where (.)  denotes the Gamma function.  

Definition 2: The system 𝐷𝑡
𝛼𝑥(𝑡) = 𝑔(𝑡,𝑥(𝑡))𝑡0

𝐶 , 0 < 𝛼 ≤ 1 

(also 1 < 𝛼 < 2) is stable if, for any initial values, there is 

𝜀 > 0  such that ‖𝑥‖ < 𝜀  for all 𝑡 > 𝑡0 . The system is 

asymptotically stable if ‖𝑥‖ → 0 as 𝑡 → +∞.  

Definition 3 [1, 24]: The introduction of Mittag-Leffler 

function is mentioned in (20), and its two-parameters form and 

its Laplace transform are mentioned in (21) and (22). 
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Where 𝑧 is a complex number, 0 < 𝛼, 0 < 𝛽 and 𝐿{. }, is 

the Laplace transform symbol. In particular, if 𝛼 = 1  and 

𝛽 = 1, then 𝐸1,1(𝑧) = 𝑒𝑧. 

Lemma 1 [19]: If 𝐴 ∈ 𝐶𝑛×𝑛 and 0 < 𝛼 < 2 , 𝜇 satisfies

 2 min ,    
, 𝛽 is an arbitrary real number, and 𝑃 >

0  is a real constant, then Mittag-Leffler function in (23) 

applies. 
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,
( )

1
E A

A
 




+  
 (23) 

In which arg( ( ))spec A   , . is the L2 norm and 

(.)spec  denotes the eigenvalues of the matrix. 

Lemma 2: based on Gronwall inequality [19] for all continuous 

functions on  )0 , ,t T T  +  , ( ) 0k t  and we have 
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Theorem 1: For fractional order 𝛼 if:  

a) 0 < 𝛼 ≤ 1 , 
arg( ( )) 2spec A 

, 
1A 

, and 

( ) ( )A t x t in 
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then the system (16) is asymptotically stabile.  

 

Proof. (a). The PPC system is as follows. 

D X AX Bu = + ( )A BK X AX= + =   (26) 

Where 𝐾 ∈ 𝑅𝑛  includes the pole placement gains and 

A BK A+ = . So the time-variant proposed SVSC can be 

considered as (16). 

To get the solution of (16), firstly we take Laplace transform 

on (16), and secondly Laplace inverse transform. 
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Where I is identity matrix. 

Lemma 1 says that there exist positive constants 𝑃and 𝑃0 

that get as follows.  
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Considering the assumption |𝜉𝑖 − 𝜉𝑖−1| ≤ 𝑁|𝑥(𝑡)| we have 
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Substituting (30) into (29), we gets  
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(𝑡 −

𝑡0)
1

‖𝐴‖
−𝛼

      (32) 

Thus, when , ( ) 0t x t→+ →  for 1A  , that ensures 

the asymptotic stability of the system (16). 

 

(b) assume ( )

0( ) ( 0,1)k

kx t x k= = as initial conditions. Through 

the Laplace and Laplace inverse transform, the output of (16) 

is as follows. 

0

,1 0 0 0 ,2 0

,

1

1

( ) ( ( ) ) ( ) ( ( ) )

( ) ( ( ) ) ( ) ( )) .
t

t

x t E A t t x t t E A t t x

t E A t A x d

 

 

 

 
    −

= − + − −

+ − − 

 
 (33) 

 

Lemma 1 says that there exist positive constants 1 , 2 , and 

3 such that 

0

1

1 0 2 0 3

0 0

1
( ) ( )

( ) ( ) ( )
1 ( ) 1 ( ) 1 ( )

t

t

x t t x t
x t A x d

A t t A t t A t



  


  



−  −  −
 + + 

+ − + − + −


 
(34) 

Considering the assumption |𝜉𝑖 − 𝜉𝑖−1| ≤ 𝑁|𝑥(𝑡)| we have 

3

1
( ) ( ) ( )A t x t x t 

  
 (35) 

Submitting (35) into (34), we gets 

0

1

1 0 2 0 1

0

( ) ( )
( ) ( ) ( )

1 ( ) 1 ( )

t

t

x t t x t
x t A x d

A t t A t



 


  



− + − −
 + 

+ − + −


     (36) 

By applying Lemma 2 on (36), results in: 

‖𝑥(𝑡)‖ ≤
Ρ1‖𝑥0‖+Ρ2(𝑡−𝑡0)‖𝑥1‖

1+‖𝐴‖(𝑡−𝑡0)𝛼 +

∫
(Ρ1‖𝑥0‖+Ρ2(𝑡−𝑡0)‖𝑥1‖)(𝑡−𝜏)𝛼−1

(1+‖𝐴‖(𝜏−𝑡0)𝛼(1+‖𝐴‖(𝑡−𝜏)𝛼)

𝑡

𝑡0
× exp (∫

(𝑡−𝑠)𝛼−1𝑑𝑠

(1+‖𝐴‖(𝑡−𝑠)𝛼

𝑠

𝜏
) 𝑑𝜏 =

 
Ρ1‖𝑥0‖+Ρ2(𝑡−𝑡0)‖𝑥1‖

1+‖𝐴‖(𝑡−𝑡0)𝛼 + ∫
(Ρ1‖𝑥0‖+Ρ2(𝑡−𝑡0)‖𝑥1‖)(𝑡−𝜏)𝛼−1

(1+‖𝐴‖(𝜏−𝑡0)𝛼)(1+‖𝐴‖(𝑡−𝜏)𝛼)
(1−

1
𝛼‖𝐴‖)

≤
𝑡

𝑡0

 
Ρ1‖𝑥0‖+Ρ2(𝑡−𝑡0)‖𝑥1‖

1+‖𝐴‖(𝑡−𝑡0)𝛼 + Ρ1‖𝑥0‖‖𝐴‖
(

1

𝛼‖𝐴‖
−2) Γ(

1
‖𝐴‖

)Γ(1−𝛼)

Γ(1+
1

‖𝐴‖
−𝛼)

(𝑡 −

𝑡0)
1

‖𝐴‖
−𝛼

+ Ρ2‖𝑥1‖‖𝐴‖
(

1

𝛼‖𝐴‖
−2) Γ(

1
‖𝐴‖

)Γ(2−𝛼)

Γ(2+
1

‖𝐴‖
−𝛼)

(𝑡 − 𝑡0)
1

‖𝐴‖
−𝛼

 (37) 

Therefore, if ( 1) 1A −  , then ( ) 0x t → as t →+ , 

which implies that the system (16) is asymptotically stable. 

 

C. External disturbances 

Assume that there is a process disturbance 𝑑  and 

measurement noise 𝑛 as is illustrated in Fig. 2. In the system 

in Fig. 2 𝑦  is the process output and 𝑦𝑛  denotes the 

measured signal. So for the signals 𝑦, 𝑦𝑛, and 𝑢 we have: 
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Fig 2. Block diagram of closed-loop system with load 

disturbance 𝑑 and measurement noise 𝑛  

 

𝐴𝑦 = 𝐵(𝑢 + 𝑑) 

𝑦𝑛 = 𝑦 + 𝑛                                 

𝑅𝑢 = 𝑇𝑟 − 𝑆𝑦𝑛 

 (38) 

n

BT BR BS
y r d n

AR BS AR BS AR BS

BT BR AR
y r d n

AR BS AR BS AR BS

AT BS AS
u r d n

AR BS AR BS AR BS

= + +
+ + +

= + +
+ + +

= − −
+ + +

 

 (39) 

These equations show the effect of command signals and 

disturbances in the closed-loop system response separately. 

The design of the closed-loop system assumed always stable, 

so all the roots of characteristic polynomial 𝐴𝑐 = 𝐴𝑅 + 𝐵𝑆 is 

in the left half plane. The Diophantine algebraic problem is 

finding two polynomials 𝑅(𝑠) and 𝑆(𝑠) for given 𝐴(𝑠), 𝐵(𝑠), 

and 𝐴𝑐(𝑠) from one equation (3). The designer can consider 

the auxiliary constraints by choosing an appropriate 

polynomial and obtaining another one. 

First, consider the low frequency load disturbance 𝑑 is a step. 

To avoid that there is a steady-state error we must require that 

the static gain from the disturbance 𝑑  to 𝑦𝑛  is zero. This 

means that lim
𝑠→0

𝐵(𝑠) 𝑅(𝑠) = 0 . If the process itself has a 

nonzero gain, 𝑠  must be a factor of 𝑅(𝑠) . Secondly, 

measurement noise is typically of high frequency. One way to 

make sure that measurement noise does not generate large 

signals is to require that the controller 𝐺𝑐  have a low-pass 

filter nature. This means that measurement signals do not give 

any errors in the process variable. To summarize, the 

disturbances can be dealt with by introducing constraints on 

the polynomials 𝑅 and 𝑆.  

 

D. Model uncertainties 

If we consider that the design of the controller is based on the 

nominal uncertain model𝐺, true open-loop transfer function is 

𝐺; The closed-loop system will be 𝑇𝑐𝑙  and 𝑇̂𝑐𝑙  respectively. 

𝑇𝑐𝑙 =
𝐺𝑓𝑓𝐺

1 + 𝐺𝑐𝐺
  (40) 

𝑇̂𝑐𝑙 =
𝐺𝑓𝑓𝐺̂

1 + 𝐺𝑐𝐺̂
  (41) 

The sensitivity of closed-loop system respect to variations in 

𝐺 is given by 

𝑑𝑇𝑐𝑙

𝑑𝐺
=

𝐺𝑓𝑓

(1 + 𝐺𝑐𝐺)2  (42) 

The relative sensitivity of closed-loop system respect to 𝐺 

can be written as 

𝑑𝑇𝑐𝑙

𝑇𝑐𝑙

=
1

1 + 𝐺𝑐𝐺

𝑑𝐺

𝐺
= Γ

𝑑𝐺

𝐺
  (43) 

The transfer function Γ  is called sensitivity function and 

transfer function Δ is called complementary sensitivity. 

Γ =
1

1 + 𝐺𝑐𝐺
 

Δ = 1 − Γ =
𝐺𝑐𝐺

1 + 𝐺𝑐𝐺
 

 (44) 

 

 (45) 

The poles of the closed-loop system are the zeros of the 

function 

𝑓(𝑠) = 1 + 𝐺𝑐(𝑠)𝐺̂(𝑠) 

= 1 + 𝐺𝑐(𝑠)𝐺̂(𝑠) + 𝐺𝑐(𝑠)𝐺(𝑠) − 𝐺𝑐(𝑠)𝐺(𝑠) 

= 1 + 𝐺𝑐(𝑠)𝐺(𝑠) + 𝐺𝑐(𝑠)(𝐺̂(𝑠) − 𝐺(𝑠)) 

 (46) 

If in the left half plane 

|𝐺𝑐(𝑠)(𝐺̂(𝑠) − 𝐺(𝑠))| ≤ | 1 + 𝐺𝑐𝐺| = |
𝐺

𝑇𝑐𝑙
| |𝐺𝑓𝑓|  (47) 

Then it follows from the principle of variation of the argument 

that the differences between the number of poles and zeros in 

right half plane for the function 1 + 𝐺𝑐𝐺 and 1 + 𝐺𝑐𝐺 are 

the same. The relative precision needed for stability robustness 

is obtained by dividing by 𝐺𝑐𝐺. 

|
𝐺 − 𝐺

𝐺
| ≤ | 

1 + 𝐺𝑐𝐺

𝐺𝑐𝐺
| = |

1

Δ
|  (48) 

The complementary sensitive function thus makes it possible 

to determine bounds for stability robustness. The following 

theorem results. 

Theorem 2: Consider the closed-loop systems 𝑇𝑐𝑙  and 𝑇̂𝑐𝑙  

obtained from systems with transfer functions 𝐺  and 𝐺  I 

respectively. The system 𝑇̂𝑐𝑙 is stable if the following 

conditions are true : 

1.  𝑇𝑐𝑙  is stable . 



107                                                     FRACTIONAL-ORDER VARIABLE../Ebrahim Abbaszadeh-Soorami, et al 

2. 𝐺  and 𝐺  have the same number of poles in right 

half plane. 

3. The inequality (47) is fulfilled in left half plane. 

The result shows that the designer must know the number of 

unstable modes in order to design a regulator for the system. 

The theorem is, however, conservative. The inequality (47) 

gives the frequency range in which it is important to have a 

good description of the process where 𝐺(𝑠) ≈ 1. 

The transfer function of the closed-loop system given in (41) 

can also be written as bellows. 

𝑇𝑐𝑙 =
1

1 + 1
𝐺𝑐𝐺⁄

  (49) 

The poles of the closed-loop system are thus the zeros of the 

function. 

𝑓(𝑠) = 1 +
1

𝐺𝑐(𝑠)𝐺(𝑠)

 

= 1 +
1

𝐺𝑐(𝑠)𝐺(𝑠)

+
1

𝐺𝑐(𝑠)𝐺(𝑠)

−
1

𝐺𝑐(𝑠)𝐺(𝑠)

 

 (50) 

It follows from the principle of variation of the argument that 

the differences between the zeros and poles in right half plane 

of the functions 1 +
1

𝐺𝑐(𝑠)𝐺̂(𝑠)
 and 1 +

1

𝐺𝑐(𝑠)𝐺(𝑠)
are the same if in 

the left half plane 

|
1

𝐺𝑐(𝑠)𝐺(𝑠)

−
1

𝐺𝑐(𝑠)𝐺(𝑠)

| < |1 +
1

𝐺𝑐(𝑠)𝐺(𝑠)

|  (51) 

Theorem 3: Consider the closed-loop systems 𝑇𝑐𝑙  and 𝑇̂𝑐𝑙  

obtained from transfer functions 𝐺 and 𝐺 respectively. The 

system 𝑇̂𝑐𝑙is stable if the following conditions are true: 

1.  𝑇𝑐𝑙 is stable . 

2. 𝐺 and 𝐺̂ have the same number of zeros in right half plane. 

3. The inequality (51) is fulfilled on the 𝐼𝑚 axe of complex plane. 

The theorem shows that stability can be maintained in spite of 

large differences between G and G ̂ provided that the loop 

gain is large. 

Based on theorems 2 and 3, to achieve robust stability based 

on an uncertain model the following rules are obtained . 

• The designer must know the number of unstable poles and 

zeros. 

• The designer must know the model precisely for those 

frequencies for which the loop gain can be made large. 

• The designer must make the loop gain small for those 

frequencies for which the relative error 
∆𝐺

𝐺
 is large. 

• The designer must have a model that describes the system 

precisely for those frequencies for which 𝐺̂ ≈ −1 

 

IV. Simulation tests 

The DC/DC converters that convert an unregulated input 

voltage to a regulated output voltage have an important role in 

energy storage systems to increase the efficiency of power 

conversion [25]. In recent studies, modeling of DC/DC 

converters in FO systems has been considered by many 

researchers. The following sample model is used for numerical 

example simulations on FO DC/DC buck converter [26] to 

show the efficiency of proposed method. 

( )

1

o i
s

V V
G

LD
L C s s

R

  
 

+

= =

+ +

 

 (52) 

Where and 𝛼 and 𝛽 reflect the non-ideality of inductor and 

capacitor model and 𝐿𝛼  and 𝐶𝛽  is fractional order 

inductance and capacitance. The control signal  𝐷 is input 

duty-cycle, 𝑉𝑜 is output voltage and 𝑉𝑖  is input voltage. The 

parameters considered as L=4.7 mH, C=10 mF, R=5 Ω, α=0.9, 

β=0.8 and Vi=1 V. Taking into account the desired response 

characteristics and the given actuator constraint |𝐷𝑚𝑎𝑥| =

1 the desired system is assumed as follows. 

22

2

( . )

1024

64 1024
m s

G
s s





 
=

+ +

 
 (53) 

Through this 𝐺𝑚 , by 0 1 =  the fastest possible system 

regarding actuator constraint will be obtained.  

A. The simulation structure 

In the simulation structure Fig. 3, the controller is performed 

as a function, by selecting polynomial 𝑆(𝑠) = 1
𝑠 +

𝑉𝑖

1024𝜉2
⁄  

and solving Diophantine equation (3), the controller’s 

polynomials will be obtained as (54) and (55). 

𝑅

=
1024𝜉2𝑠3 + (65536𝜉3 + 𝐿𝛼𝐶𝛽𝑉𝑖)𝑠2 + (10242𝜉4 + 64𝑉𝑖𝜉)𝑠

𝐿𝛼𝐶𝛽1024𝜉2𝑠2.7 +
𝐿𝛼

𝑅
1024𝜉2𝑠1.9 + 𝐿𝛼𝐶𝛽𝑉𝑖𝑠1.7 +

𝐿𝛼

𝑅
𝑉𝑖𝑠0.9 + 1024𝜉2𝑠 + 𝑉𝑖

 

 (54) 

𝑇 =
1024𝜉2

𝑉𝑖

  (55) 

In performing SVSC schema, we got N=10 and decreasing 

step  𝑠𝐷 = 0.05. By this design we have 𝑠-factor in the 𝑅(𝑠) 

cause to disappear low frequency step disturbance in steady-

state, also, the controller 𝐺𝑐 have low-pass filter nature, so it  
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Fig 3. The simulation structure 

 

 
Fig 4. Output (a), control signal (b) and error (c) of the proposed 

controller in the presence of disturbance. 

can eliminate the high frequency noise. Furthermore, by 

considering conditions in Theorem 2 and Theorem 3, the 

closed-loop system in the presence of model uncertainty will 

stay stable. 

 

B. The simulation tests 

a) In the presence of disturbance 

In order to evaluate the controller in the presence of 

disturbance, the control system is affected by step load 

disturbance with amplitude 0.05|𝐷𝑚𝑎𝑥 | = 0.05 in t=0.35s is 

shown in Fig. 4 . 

As a physical interpretation of Fig. 4, the disturbance deviation 

in the duty cycle is well compensated. It is illustrated that the 

control system has eliminated the effect of disturbance within 

an acceptable period of time and the control signal behaves 

smoothly within the actuator constraint range.  

b) In the presence of model uncertainties 

In this simulation case, the parameter of system 𝐺(𝑠)  is 

replaced by the values 𝑎2 = 0.8𝑎2, 𝑎1 = 0.82𝑎1,

𝑎𝑛𝑑 𝑎0 = 0.78𝑎0 in time 0.35s. From a physical point of  

 

 

  

 Fig 5. Output (a), control signal (b) and error (c) of the 

proposed controller in the presence of model uncertainty. 

view, this case can be interpreted as changes in the value of 

electrical elements due to wear or environmental conditions. 

As is illustrated in Fig. 5, the controller has an acceptable 

performance in the presence of significant model uncertainty. 

There is no considerable effect on response and control signal 

of the system. 

 

c) In the presence of noise, disturbance and model 

uncertainties 

In the following case, In addition to disturbance and model 

uncertainties, the response signal is corrupted by measurement 

noise. The 29dB white Gaussian noise is added to measured 

signal, step load disturbance with amplitude 0.05 in t=0.35s 

and the parameter change as case b is forced to system. Fig. 5 

shows the performance of the controller in this environment. 

As can be seen, the performance in the presence of noise, 

disturbance and model uncertainties is satisfactory. The 

control system can tolerate the noise, disturbance and model 

uncertainties. There is no change in the settling time, and the 

control signal is smooth within the actuator constraint range. 

d) Comparative results 

To improve the results and discussions, a comparison with 

methods Fractional-order Sliding-Mode Control [27] and 

Fractional-order PID (FPID) [28] is presented. For these cases 

the fractional sliding surface is selected as follows: 

𝑆 = 𝑒(0.7) + 𝜆𝑒,  (56) 

Where λ=1; and parameters of the FPID selected thorough 

MATLAB SQP_ ITSE optimization (𝑃 = 0.10, 𝐼 = 22.08 
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Fig 6. Output (a), control signal (b) and error (c) of the proposed 

controller in the presence of disturbance, model uncertainty and 

noise 

Table 1.Table of results 

method 𝒕𝒔 umax 

Robust SVSC 0.15s 1.0 (by restriction) 

FSMC 0.24s 1.0 

FPID 0.41s 1.0 

 

𝜆 = 0.78, 𝐷 = 0.02, 𝑎𝑛𝑑 𝜇 = 0.09 ). Fig. 6 shows the 

comparative performance of the controllers. Table 1 

summarizes the simulation results. 

As is illustrated, the SMC is as fast as the proposed controller, 

and has good robustness against uncertainties; but the SMC is 

diagnosed with chattering, while the control signal of the 

proposed controller is smooth. Plus, there is no restriction 

barrier on the control signal in FSMC and FPID. By the 

initiative presented in this article, during the control period it 

exploits the maximum capacity of the actuator; and by 

selecting proper polynomials in controller design, the robust 

performance and robust stability against external disturbances 

and model uncertainties was obtained. Therefore, we could 

implement a faster controller while considering control signal 

constraints in the presence of model uncertainties and external 

disturbances. The control signal is soft and has no chattering.

 

Fig 7. Comparison of the proposed controller with FSMC and 

FPID: response (a), the control signal (b), and error (c) 

 

V. Conclusions 
 

In this paper, the fractional-order floated pole controller as a 

fast and robust approach for the FO systems is proposed. The 

proposed robust variable structure control yields a continuous 

and constrained control signal, also a fast response in the 

presence of model uncertainties and external disturbances. In 

the proposed method, the pole placement algorithm is 

employed, the robust property added to the controller by 

designing proper polynomials, then due to a simple 

optimization routine it made fast and faster within the stability 

region. In the proposed robust system, a continuous and 

constrained control signal is get. The sufficient condition of 

stability is developed based on attributes of the Mittag-Leffler 

function and the stability theory of FOS. Numerical 

simulations and examples are done to demonstrate the 

effectiveness of the proposed method. As the future scope, the 

generalization of other SVSC methods to FO systems can be 

relevant. Also as a recommendation for the practical use of the 

proposed method in real life, the Oustaloup approximation and 

Hankel model order reduction techniques can be used for 

approximation to integer order systems and reduce the 

complexity of such high-order integer controllers, respectively. 
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