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Scene text detection frameworks heavily rely on optimization methods for their 

successful operation. Choosing an appropriate optimizer is essential to performing recent 

scene text detection models. However, current deep learning methods often employ 

various optimization algorithms and loss functions without explicitly explaining their 

selections. This paper presents a simple segmentation-based text detection pipeline 

capable of handling arbitrary-shaped text instances in wild images. We explore the 

effectiveness of well-known deep-learning optimizers to enhance the pipeline's 

capabilities. Additionally, we introduce a novel Segmentation-based Attention Module 

(SAM) that enables the model to capture long-range dependencies of multi-scale feature 

maps and focus more accurately on regions likely to contain text instances. The 

performance of the proposed architecture is extensively evaluated through ablation 

experiments, exploring the impact of different optimization algorithms and the 

introduced SAM block. Furthermore, we compare the final model against state-of-the-

art scene text detection techniques on three public benchmark datasets, namely 

ICDAR15, MSRA-TD500, and Total-Text. Our experimental results demonstrate that 

the Focal Loss (FL) combined with the Stochastic Gradient Descent (SGD) + Momentum 

optimizer using a poly learning-rate policy achieves a more robust and generalized 

detection performance than other optimization strategies. Moreover, our utilized 

architecture, empowered by the proposed SAM block, significantly enhances the overall 

detection performance, achieving competitive H-mean detection scores while 

maintaining superior efficiency in terms of Frames Per Second (FPS) compared to recent 

techniques. Our findings shed light on the importance of selecting appropriate 

optimization strategies and demonstrate the effectiveness of our proposed SAM in scene 

text detection tasks. 

 

I. Introduction 

Text Reading from wild images is a common research topic 

in computer vision with various valuable applications [1-4]. It 

has numerous practical applications such as optical character 

recognition, multi-lingual translation, image search, etc. [5-6]. 

Reading text from images in the environment can be broken 

down into two parts: (1) text detection, which focuses on  

locating the text within the image, and (2) text recognition, 

which involves converting the located text or individual word 

image into a string. This paper focuses on text detection, which 

is more complex than recognition due to wild images' variety 

of text shapes and complex backgrounds. 

Before the deep learning era, text detection techniques relied 

on connected components or sliding window-based techniques, 
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which used handcrafted features such as MSER [7,8] or SWT 

[9]. These techniques had several significant areas for 

improvement: (1) they were designed only for detecting 

individual characters or components, making it challenging to 

identify regional context information and resulting in low 

recall performance. (2) They required multiple post-processing 

steps for text detection. (3) They were limited to horizontal text 

and could not handle multi-oriented text instances. 

Recently, deep learning-based techniques are demonstrated 

superior performance to traditional classical machine learning-

based methods for detecting various challenging text instances 

appearing in wild images. These deep-learning methods often 

utilize popular frameworks inherited from object detection 

communities, such as SSD [10], YOLO [11], Faster R-CNN 

[12], or object segmentation architectures such as FCN [13] 

and Mask R-CNN [14]. Deep learning-based text detectors 

mainly detect text at the word level, and they usually struggle 

with finding curved, very long, or abnormally shaped word 

instances by using only a single bounding box [15]. Improving 

the accuracy of text bounding boxes without significantly 

increasing the number of proposals, particularly in the case of 

curved or irregular-shaped text, is a crucial challenge in scene 

text detection. 

Optimization plays a vital role in deep learning problems, 

and the objective is to find a way to optimize efficiency and 

determine the parameters that minimize the loss function [48, 

49, 61]. Optimization algorithms [16-19] are defined by their 

update rule, which is regulated by hyper-parameters 

influencing its behavior (e.g., the learning rate). However, no 

clear theory exists on which optimizer is best suited for scene 

text detection. 

Attention, in the context of deep learning and natural 

language processing, refers to a mechanism that allows a 

model to focus on specific parts of the input data that are more 

relevant to the task. It enables the model to assign weights to 

different input parts, giving higher importance to the more 

informative elements. In computer vision, attention 

mechanisms are used successfully in tasks like image 

captioning, object detection, and visual question answering [50, 

51]. In text detection, some recent methods [52, 53] benefited 

the attention mechanism in their models and achieved superior 

performance in benchmark datasets. 

This paper utilizes a straightforward pipeline for scene text 

detection, which employs a ResNet [20] backbone for feature 

extraction followed by a Feature Pyramid Network (FPN) to 

obtain multi-scale feature maps. Furthermore, we design a 

specific attention module and insert it after FPN, namely the 

Segmentation-based Attention Module (SAM), to focus on 

different regions of the feature maps that are more likely to 

contain text. This framework makes the final model fast and 

capable of detecting arbitrary text shapes, such as curved or 

multi-oriented text. This paper also addresses the issue of 

various optimizers used in scene text detection architectures by 

examining the loss functions and optimization techniques 

commonly used in deep learning for object detection and 

segmentation. Moreover, it selects the best loss function and 

optimization method for the leveraged scene text detection 

framework. 

Our main contributions are: (1) we comprehensively 

compare and analyze deep learning optimization algorithms to 

determine their effectiveness in text detection applications. (2) 

we design an attention-based module, SAM, to boost the 

detection performance of the utilized detector. (3) we conduct 

several ablation experiments to evaluate the effect of the 

designed block with the baseline architecture. (4) we compare 

the final proposed model with state-of-the-art text detection 

techniques on three well-known benchmark datasets. 

 

II. Related Work 

This section briefly overviews the deep learning-based 

techniques for scene text detection and examines the various 

loss functions and optimization methods used in these 

approaches. 

 

A. Text Detection 

Generally, scene text detection methods can be categorized 

as follows:  

Regression-based (RB): Several recent deep learning-

based scene text detection techniques [21, 22] used general 

object detection frameworks, like SSD [10] or Faster R-CNN 

[12]. These methods treat text regions as objects and predict 

candidate bounding boxes from them directly. For instance, 

TextBoxes [22] altered the SSD [10] kernels by using long 

default anchors and filters to handle the diverse aspect ratios 

of text instances and detect various text shapes. Unlike 

TextBoxes, the deep matching prior network (DMPNet) [23] 

employed sliding windows with quadrilateral shapes to catch 

text with multiple orientations. 

Several regression-based methods [24, 25] attempted to 

tackle the detection challenges posed by rotated and arbitrarily 

shaped text. For example, EAST [21] introduced a fast and 

precise text detector that uses dense predictions and NMS to 

detect multi-oriented text in an image without needing manual 

anchors. Regression-based methods generally have a 

straightforward post-processing system for handling multi-

oriented text. However, due to limitations in their structure, it 

is challenging to produce accurate bounding boxes for text 

instances with arbitrary shapes. 

Segmentation-based (SB): Some techniques [26-28, 34] 

use pixel-level classification to detect text regions on a word 

or character level. These methods usually adopt a 

segmentation framework such as FCN [13] or Mask R-CNN 

[14]. For instance, Zhang et al. [26] applied FCN to generate a 

salience map of text regions. TextSnake [28] used FCN as a 

foundation and identified text instances by detecting and 

piecing together local parts. 
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The previously mentioned methods are designed to detect 

text in images at the word level. However, detecting text using 

word instances is difficult, as individual characters may have 

arbitrary shapes. As a result, some recent text detection 

techniques shifted towards character-level detection [15, 29, 

30]. For instance, [29] generates multi-oriented text bounding 

boxes using a saliency map of text regions obtained from a 

segmentation network and character-level annotations. 

Another example is SegLink [30], which identifies small text 

segments in images and combines them to form word boxes 

through additional post-processing. CRAFT [15] uses a 

weakly supervised approach to detect individual characters in 

the arbitrarily shaped text, leading to state-of-the-art results in 

benchmark datasets. These recent methods, which adopt a 

segmentation framework, tend to better detect multi-oriented 

text than regression-based methods. However, they also come 

with more complex and time-consuming post-processing. 

Several approaches [31, 32] aimed to simplify the 

architecture and enhance computation speed. Inspired by [32, 

33], our method offers a streamlined pipeline that can 

accurately detect arbitrarily shaped text more efficiently than 

the various state-of-the-art methods [15, 21, 27, 28, 34, 52-60]. 

Attention-based Detectors: The attention mechanism helps 

the model to focus on the relevant parts of the image that are 

likely to contain text, improving the localization accuracy of 

the text detection system. By adapting the attention module to 

the specific characteristics of the text detection task, the model 

can achieve better results than the architecture without 

attention. 

Many recent works [50-52] utilized attention in their 

pipeline to detect arbitrarily shaped text and object instances 

and achieved superior performance in benchmarks [50, 51]. 

For example, Hou et al. in [50] utilized coordinate information 

to selectively attend to relevant spatial locations in feature 

maps, improving model accuracy and reducing computational 

complexity. Tang et al. [52] presented a transformer-based 

approach for scene text detection, using representative features 

to avoid background disturbance and reduce computational 

costs. Their method achieves state-of-the-art results on popular 

datasets by effectively grouping components corresponding to 

text instances, enabling easy bounding box extraction without 

post-processing. 

 

B. Loss Function for Deep Learning 

The loss function represents our model’s disagreement with 

the actual and predicted labels during the training phase. By 

evaluating the extent of this disagreement, we gain valuable 

insights into the model's learning progress and its ability to 

capture the underlying patterns within the data effectively. 

This section examines the standard loss functions utilized in 

recent deep learning-based scene text detection and object 

detection architectures.  

 

Fig. 1. Focal loss with different values of Gammas (γ). 

 

Cross-Entropy (CE) Loss: This function evaluates the 

accuracy of a classification model, which gives an output 

between 0 and 1 in the form of probability. It is defined as: 

CE(𝑝, 𝑦) = {
−log(𝑝) if 𝑦 = 1

−log(1 − 𝑝) otherwise.
 (1) 

where 𝑦 ∈ {±1} represents the ground-truth class and the 

𝑝 ∈ [0,1] denotes the estimated probability of model for the 

class with label 𝑦 = 1. For simplicity, we can define 𝑝𝑡 as 

follows: 

𝑝𝑡 = {
𝑝 if 𝑦 = 1
1 − 𝑝 otherwise,

 (2) 

Therefore, we can calculate CE(𝑝, 𝑦) = CE(𝑝𝑡) =

−log(𝑝𝑡). As evident from Figure 1, the cross-entropy loss has 

a drawback, shown in its plot (top), that it incurs a loss even 

for easily classified examples ( 𝑝𝑡 > 0.5 ) of non-trivial 

magnitude. When added over many straightforward examples, 

this could lead to small loss values, overpowering the rare class 

[35]. 

Focal Loss: The Focal Loss (FL), introduced in [35], is a 

modified version of the Cross-Entropy loss that assigns 

varying levels of importance to individual samples based on 

their classification error. The focal loss includes a modulation 

factor (1 − 𝑝𝑡)𝛾, controlled by the focusing parameter 𝛾 ≥ 0, 

which is added to the Cross-Entropy loss. As shown in Figure 

1, γ = 0 is utilized for Binay Cross Entropy (BCE) loss, γ > 0 

is known as focal loss, and it outperforms BCE loss in object 

detection problems. The Focal Loss is defined as follows (more 

detail in Figure 1): 

FL(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)𝛾log(𝑝𝑡) (3) 

A balanced version of the Focal Loss is used in the 

implementation time with a default value of 𝛼 = 0.9. In this 

paper, we use γ = 2 in our experiments. 

 

C. Optimization Algorithms for Deep Learning 

The optimization algorithm minimizes or maximizes a given 

function, 𝑓(𝑥), in deep learning-based methods. Optimization 

aims to train the network by minimizing the loss function 𝐿, 

representing the difference between the predicted value 𝑦′ 

and the actual value y. The predicted value 𝑦′ is obtained  
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TABLE 1. 

PARAMETERS AND THEIR SPECIFICATIONS THAT ARE 

USED IN OPTIMIZATION EQUATIONS. 

Parameter Specification 

𝑡 time step 

𝑤 weight 

𝛼 learning rate 

∂ℒ/ ∂𝑤 gradient of ℒ, Loss function, w.r.t. to 𝑤 

 

through forward propagation, which uses the weights (𝑤) and 

biases (𝑏) of the network. Optimization algorithms update the 

values of 𝑊 and 𝑏 to minimize the cost function 𝐿. This 

section reviews some commonly used optimizers. A summary 

of the parameters and specifications used in these algorithms 

is provided in Table 1. 

Given a function of 𝑦 = 𝑓(𝑥), an optimization algorithm 

helps minimize or maximize the value of 𝑓(𝑥) . In deep 

learning-based architectures, optimizers are used to train the  

frameworks by minimizing the loss function ℒ,  which is 

defined as follows : 

ℒ(𝑤, 𝑏) =
1

𝑚
∑ ℒ𝑖

𝑚

𝑖=1

(𝑦𝑖
′, 𝑦𝑖) 

 

(4) 

The value of ℒ is defined as the mean loss of the predicted 

value 𝑦′  by the detector and the actual value 𝑦  of the 

ground- truth. 

Using the network’s weights 𝑤 and biases 𝑏 during the 

forward propagation step of training, the values 𝑦′  are 

computed. Furthermore, by updating the trainable parameters, 

𝑤 and 𝑏, we can minimize the value of the loss function ℒ 

using different optimization algorithms. In the rest of this 

section, we review commonly used optimizers used in deep 

learning frameworks. Table 1 shows the commonly used 

parameters for explaining optimization algorithms. 

Gradient Descent: is a first-order optimization algorithm 

used to minimize the cost function ℒ  and find the optimal 

values of the weight matrix 𝑤  and bias 𝑏 . It updates the 

parameters after going through the entire training data, which 

can be a challenge if the data is too large to fit in memory [36]. 

Mathematically it can be defined as: 

𝑤𝑡+1 = 𝑤𝑡 − 𝛼
∂ℒ

∂𝑤𝑡

 (5) 

In Stochastic Gradient Descent (SGD), instead of evaluating 

the loss function and gradient using all the training examples, 

a small subset, known as a mini-batch ( 𝐵 ), is randomly 

selected and used to compute an approximation of the total 

sum and the actual gradient in each iteration. 

∂ℒ(𝑤)

∂𝑤
=

1

𝐵
∑

∂ℒ𝑘(𝑤)

∂(𝑤)

𝐵

𝑘=1

 , (6) 

𝑤𝑡+1 = 𝑤𝑡 − 𝛼
∂ℒ

∂𝑤𝑡

 (7) 

Mini-Batch Gradient Descent addresses the limitations of 

Gradient Descent by dividing the entire training data into 

smaller subsets, known as mini-batches, of sizes 8, 16, 32, or 

64. These mini-batches are then used to train the network in a 

series of iterations. SGD offers several benefits compared to 

traditional Gradient Descent, such as more accurate data  

estimation, smoother convergence, a larger learning rate, and 

faster training. However, SGD also has some drawbacks, 

including the tendency to follow shallow dimensions in rapidly 

changing loss functions, getting stuck in local minima or 

saddle points (which are more common in high-dimensional 

problems like scene text detection), and the noise in gradient 

calculations from using mini-batches [19]. 

SGD+Momentum: To address the limitations of Stochastic 

Gradient Descent (SGD), adding a term called momentum [16] 

can be helpful. Thus we can define it as follows: 

 
𝑣𝑡+1 = 𝜌𝑣𝑡 +

∂ℒ

∂𝑤𝑡
𝑤𝑡+1 = 𝑤𝑡 − 𝛼𝑣𝑡+1

 (8) 

where 𝜌 denotes the friction constant; typically, its default 

value is 0.9 or 0.99. 𝑣(𝑡) is the velocity that builds up as a 

running mean of gradients. 

AdaGrad: Adaptive gradient or AdaGrad [17], dynamically 

updates the learning rate at each update and for each weight 

individually, in which the gradient component remains 

unchanged like in SGD and is defined as follows: 

𝑤𝑡+1 = 𝑤𝑡 −
𝛼

√𝑣𝑡 + 𝜖
.

∂ℒ

∂𝑤𝑡

,

𝑣𝑡 = 𝑣𝑡−1 + [
∂ℒ

∂𝑤𝑡

]2

 (9) 

In the above equation, 𝜖  shows a small positive value. 

However, the main weakness of AdaGrad is its learning rate, 

𝛼, which is continuously decreasing and decaying. This can 

lead to slow or stalled training convergence, particularly for 

deep neural networks and complex models.  

RMSprop: An alternative method for optimizing adaptive 

learning rates is RMSprop [18], designed to enhance AdaGrad 

[17]. Unlike AdaGrad [17], which accumulates the squared 

gradients, RMSprop employs an exponential moving average 

of these gradient values. RMSprop has now become a common 

choice, like momentum, for updating the learning rate 

component in the majority of optimization algorithms. 

𝑤𝑡+1 = 𝑤𝑡 −
𝛼

√𝑣𝑡 + 𝜖
.

∂ℒ

∂𝑤𝑡

,

𝑣𝑡 = 𝛽𝑣𝑡−1 + (1 − 𝛽)[
∂ℒ

∂𝑤𝑡

]2

 
 

(10) 

In the above equation, 𝛽 is a hyperparameter with a default 

value of 0.9 during implementation as in [19]. 

Adam: Adaptive Moment (Adam) [19] is an optimization 

algorithm that merges the ideas of Momentum and RMSprop. 

It employs the squared gradients, like RMSprop, to adjust the 
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learning rate and incorporates momentum by utilizing the 

moving average of the gradient rather than the gradient itself, 

similar to SGD with momentum. 

 

𝑣𝑡+1 = 𝛽1𝑣𝑡 − (1 − 𝛽1)
∂ℒ

∂𝑤𝑡

,

𝑠𝑡+1 = 𝛽2𝑠𝑡 − (1 − 𝛽2)[
∂ℒ

∂𝑤𝑡

]2,

𝑤𝑡+1 = 𝑤𝑡 − 𝛼
𝑣𝑡+1

√𝑠𝑡+1 + 𝜖

 (11) 

The above 𝛽1  and 𝛽2  hyperparameters have a default 

value of 0.9 in practice [19]. 

All the optimization algorithms discussed above are 

commonly applied in scene text detection and recognition [36]. 

However, it is worth mentioning that other optimization 

algorithms also are used in deep learning object detection 

frameworks, such as Adadelta [37], Nadam [38], AdaMax 

[39], and AMSGrad [40], that are not usually used for scene 

text detection. We examine the suitability of each optimizer or 

learning rate for the scene text detection framework in Section 

IV. 

 

III. Methodology 

In this section, we introduce the baseline and proposed 

module of the segmentation-based pipeline for scene text 

detection. Figure 2 presents an overview of the entire 

architecture. The network utilizes a ResNet + Feature Pyramid 

Network (FPN) to extract multiscale feature maps from the 

input images (The left part of Figure 2). These features are 

subsequently processed by the proposed segmentation-based 

attention module (SAM), which enhances the model's ability 

to concentrate on regions in the image that likely contain text 

instances during the training phase (our main contribution in this 

paper, which is bonded with a yellow box in the middle). The 

obtained features are then employed to generate the text 

instance masks (The right part of Figure 2). 

 

A. Text-detection Architecture 

Feature Extraction: We leverage the ResNet-based 

backbone network (e.g., ResNet18 or ResNet50) [20] to 

extract features from the input image. This paper uses two light 

and deep backbones for feature extraction, ResNet18 and 

ResNet50. The ResNet18 is mainly utilized for ablation 

experiments, and the ReesNet-50 is used in our final model to 

fairly compare it with recent methods. 

FPN: We then pass the extracted features through the FPN 

network [41] to obtain multi-scale feature maps (1/4, 1/8, 

1/16}), enabling the text detectors to be more robust in 

detecting text of different sizes and scales in an image. The 

feature maps with different scales can be written as follows: 

𝐹 = {𝑓𝑘𝜖ℝ𝐶×𝐻𝑘×𝑊𝑘  | 𝑘 = 0, 1,2} 
 

(12) 

 

 

Fig. 2. The overall utilized scene text detection architecture. 

 

The selected features are then concatenated (concat) and 

then fused by a 1x1 1D convolution layer (conv) as described 

as follows: 

𝐹̂ = 𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑐𝑎𝑡(𝑓𝑘) | 𝑘 = 0,1,2) (13) 

Segmentation-based Attention Module (SAM): We 

introduce an innovative attention module for the utilized 

segmentation-based architecture called SAM, as shown in 

Figure 2. Unlike [50, 51], SAM is designed to disseminate 

attention values across the spatial dimension coming from the 

FPN by using an element-wise multiplication strategy, which 

enables the model to focus more on different regions of the 

feature maps containing text instances. 

Let 𝐹̂  be the fused feature maps of equation (11); the 

output 𝒮, which represents the global attention pooling for the 

SAM block (as shown with the blue dotted box in Figure 2), 

can be computed as follows: 

𝒮 = 𝐹̂ 𝑢𝑠 ⊗ (𝕔𝛾 ∑
𝑒𝕔𝛼𝑓̂𝑖

∑ 𝑒𝕔𝛼𝑓̂𝑗
∀𝑗∀𝑖

𝐹̂𝑖) (14) 

where 𝕔𝛾 and 𝕔𝛼 are 1x1 convolutions that are learnable, 

𝐹̂ 𝑢𝑠is a flattened version of vector 𝐹̂. The j and i enumerate 

in the positions of all pixels. The symbol ⊗ represents the 

matrix multiplication. 

Then, as depicted in the green dotted box of Figure 2, the 

variable 𝕊  is transformed to capture channel-wise 

dependencies. The computation of this transformation can be 

expressed as: 

𝕊 =  𝜎 (𝕔1 (𝑅𝑒𝐿𝑈 (𝐿𝑁(𝕔2(𝒮))))) (15) 

where 𝜎  shows the Sigmoid function. 𝐿𝑁(. ) represents 

the Layer Normalization. 𝕔1  and 𝕔2  are 1×1 1D 

convolutions that are learnable. 

Finally, using equations (13) and (15), the output of SAM, 

Γ , can be calculated as follows:  

Γ = 𝕊  ⨀ 𝐹̂ (16) 
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where ⊙ is element-wise multiplication, the resulting 

outputs of equation (14) are then used to generate the 

segmentation map, as shown in Figure 2. 

Binarization and Bounding Box Generation: After 

integrating the attention module into the baseline architecture, 

attended feature maps are obtained, as shown in Figure 2. 

These resulting features undergo post-processing steps to be 

binarized and highlight potential text regions. Using the 

binarized feature map, we employ differentiable binarization 

and bounding box label generation post-processing techniques, 

as described in [32, 33], to output the desired text detection. 

This enables the model to accurately identify and localize 

individual text regions within the image.  

 

B. Loss Function 

The loss function ℒ is a combination of the loss for the 

probability map (ℒ𝑠) and the loss for the binary map (ℒ𝑏) and 

the loss for the threshold map ℒ𝑡 with weight factors 𝛼 and 

𝛽, which can be defined as follows: 

 ℒ = ℒ𝑠𝑒𝑔 + 𝛼 × ℒ𝑏 + 𝛽 × ℒ𝑡 (17) 

where 𝛼 and 𝛽 are set to 0.9 during our experiments. 

Previous scene text detection methods [21, 22, 26-28] faced 

challenges due to the extreme imbalance between foreground 

and background classes in training. Text regions occupy a 

small portion of the images, where the complex and 

straightforward examples are treated equally during training. 

We adopt the focal loss [35], modifying it to be more suitable 

for scene text detection, to address this imbalance issue. 

Therefore, the loss function can be defined as follows: 

ℒ𝑠𝑒𝑔 = ℒ𝑏 = FL(Y, Y∗) =
∑ 𝐹𝐿𝑖∈𝑆𝑙

(𝑝𝑡)

|Y∗|

=
∑ −𝑖∈𝑆𝑙

𝛼𝑡(1 − 𝑝𝑡)𝛾log𝑝𝑡

|Y∗|

 
 

(18) 

In (18), Y  shows the score map prediction, and Y∗ 

illustrates the ground-truth. 𝑆𝑙  denotes sampled set where the 

ratio of positives and negatives is 1: 3 . The 𝛾  parameter 

denotes the focusing parameter, and we set it to 2  in our 

experiments. This parameter reduces the loss contribution 

from easy samples (𝑝𝑡 → 1) and balances the straightforward 

and complex examples on the pixel level during optimization. 

We show that the leveraged loss function performs better on 

convergence and improves the precision performance on 

segmentation tasks. Furthermore, for our experiments, we use 

the following Binary Cross Entropy loss to compare the results 

of it with focal loss: 

ℒ𝑠𝑒𝑔 = ℒ𝑏 = ∑ 𝑌𝑖

𝑖∈𝑆𝑙

log𝑌𝑖
∗

+ (1 − 𝑌𝑖)log(1 − 𝑌𝑖
∗) 

 

(19) 

 

 

 

C.  Optimization 

Which Optimizer: Section II.B addressed the availability 

of numerous optimization methods for training deep learning 

models. However, choosing an appropriate optimizer or 

learning rate for a specific deep-learning framework remains 

to be determined. Despite the widespread use of adaptive 

optimization techniques, especially Adam, in scene text 

detection, their generalization and performance beyond the 

training set need to be better comprehended. 

Learning Rate Policy: We use different learning rate 

policies like step decay or constant in our experiments while 

training our framework. However, we show that the “poly” 

learning rate policy, where the learning rate is multiplied by a 

specific equation, is more effective than the constant learning 

rate or “step” learning rate (which reduces the learning rate at 

a fixed step size). 

(1 −
iter

max_iter
)

power

 (20) 

We compare the effect of this learning rate with “step” and 

“constant” policy in Section IV.C and IV.D. 

 

IV. Experimental Results and Discussion 

In this section, first, we provide the implementation details 

of the models. Next, we briefly overview the utilized 

benchmark datasets and evaluation metrics. Then, we conduct 

multiple ablation studies of the baseline and proposed 

schemes. Finally, the proposed technique is tested and 

discussed quantitatively and qualitatively on three demanding 

public benchmarks: MSRA-TD500 [42], Total-Text [43], and 

ICDAR 2015 [44]. In the end, we discuss the limitation of the 

proposed model and offer insights into forthcoming efforts as 

future work to enhance its performance. 

 

A. Implementation Details 

We employ two models for the ablation experiments and 

comparison with state-of-the-art scene text detection methods. 

The baseline model utilizes a ResNet18 as the feature extractor, 

while the final model, used for comparison, is trained with the 

ResNet50 backbone. The final model (the proposed model) is 

pre-trained on 200K images from the Synthetic Text dataset 

[45] and subsequently fine-tuned until convergence on three 

real-world datasets (ICDAR15, Total-Text, MSRA-TD500 - 

one model for each dataset). 

The parameters of the utilized loss functions are optimized 

using the SGD+ Momentum optimizer with a poly-learning 

policy. Training is conducted on 2 NVIDIA Tesla A100 GPUs, 

with a batch size of 4, and the entire process of training and 

fine-tuning takes approximately 30 hours. Various 

augmentation techniques, such as image resizing, random 

rotations, and horizontal flipping, are applied during training. 

All models are evaluated on a single GPU of NVIDIA RTX 

3080Ti with 12GB of memory. 

 



177                                            Investigation of Deep Learning Optimization Algorithms in Scene Text Detection /Z. Raisi et al 

TABLE 2. 

EFFECT OF DIFFERENT OPTIMIZATION METHODS ON 

SCENE TEXT DETECTION MODEL. 

Optimizer Iteration Training Loss Val H-mean 

 

SGD 

18K 2.83 29.11 

36K 2.42 29.25 

72K 2.11 32.11 

 

SGD+Momentum 

18K 2.65 32.97 

36K 2.35 33.45 

72K 2.09 35.03 

 

Adam 

18K 4.23 27.95 

36K 3.11 28.12 

72K 2.95 28.32 

 

B. Datasets and Evaluation Metrics 

SynthText: SynthText [45] in the wild is a large synthetic 

dataset of 858,750 artificial scene images used to pre-train our 

model. These images are created by combining natural images 

with text generated with different fonts, sizes, orientations, and 

colors. The annotations include both word and character-level 

rotated bounding boxes and text sequences. We use this 

synthetic dataset to pre-train our final model to compare with 

other frameworks. 

ICDAR2015: The ICDAR2015 [44] dataset contains 1000 

images for training and 500 for testing, with annotations at the 

word level represented by quadrilateral boxes. This dataset 

presents a higher difficulty level due to its text instances with 

varying orientation, illumination, and complex backgrounds, 

and most of the images are taken in indoor environments. 

Total-Text: The TotalText dataset [43], introduced in 

ICDAR 2017, contains 1255 training and 300 testing images 

with text annotations provided as polygon shapes and word-

level transcriptions. 

MSRA-TD500: On the other hand, the MSRA-TD500 

dataset [42] consists of 300 training images and 200 test 

images annotated with text lines. This dataset is challenging 

due to multi-lingual, arbitrary-oriented, and long text lines. 

Evaluation Metric: In terms of quantitative evaluation, we 

use the ICDAR15 Intersection over Union (IoU) Metric [44] 

to measure the accuracy of the detection results. 

𝐼𝑂𝑈 =
𝐴(𝐺𝑗 ∩ 𝐷𝑖)

𝐴𝑟(𝐺𝑗 ∪ 𝐷𝑖)
 (21) 

Where 𝐴(. ) denotes area. The IoU is then calculated by 

comparing the 𝑗 th ground-truth bounding box to the 𝑖 th 

detection bounding box, and detection is considered correct if 

the IoU value is greater than or equal to 0.5. In addition, we 

use the H-mean, also known as the F-score, which is a 

combination of precision (P) and recall (R), to measure the 

performance of the pre-trained model of [15, 21, 27, 34] as 

described in [3] and the quantitative results of recent methods 

in [34,52-60]. 

H-mean = 2
𝑃 × 𝑅

𝑃 + 𝑅
 (22) 

 

TABLE 3. 

EMPLOYING DIFFERENT LEARNING 

HYPERPARAMETERS ON THE TOTAL-TEXT [43] 

VALIDATION SET. 

Learning policy Batch size Iteration H-mean 

constant 4 50K 60.36 

  step 4 50K 67.48 

step 4 200K 75.35 

poly 4 50K 70.23 

poly 4 100K 71.81 

poly 6 100K 72.58 

poly 4 200K 83.26 

 

For evaluating the test set of Total-Text and MSRA-TD500 

datasets, we utilize similar evaluation metrics introduced in 

[43] and [42], respectively. 

 

C. Effect Of Different Optimizers 

To show the effect of the different optimizers, we first 

trained the baseline framework with ResNet18 backbone and 

without the SAM block on the 70% of SynthText dataset [47] 

for 80k iterations with a fixed learning rate of 1 × 10−4 in 

three SGD, SGD+Momentum (0.9), and Adam optimization 

algorithms. Adam works well in practice and outperforms 

other adaptive techniques, and it is the default optimizer in 

many deep learning-based detectors. Then, we evaluated our 

pre-trained models with three optimizers on the remaining 

30% of the SynthText dataset as validation, as shown in Table 

2. Although more epochs of training, we observed more 

decline in loss of the SGD optimizer compared to Adam in 

higher iterations. 

Generalizability is a crucial characteristic in many deep 

learning models, which shows how a trained model on one 

dataset is capable of detecting challenging text in the 

validation set or other datasets; As can be seen from Table 2., 

SGD and SGD+Momentum provide better validation H-mean 

performance compared to Adam as the number of iteration 

increased. For instance, in the 72K iteration, SGD+Momentum 

achieved about 35%, while Adam remained at about 28%. 

Therefore, SGD has better generalization capability than 

Adam for our proposed method, and for the rest of this paper, 

we used SGD+Momentum to train our models.  

 

D. Effect of Poly Learning Rate 

Choosing a proper learning rate is also essential during the 

training of deep learning networks. For this purpose, we 

experimented with comparing the effect of different learning 

rates on our scene text detection problem. Table 3 illustrates 

the H-mean performance of employing “constant,” “step,” and 

“poly” learning rates. We used a fixed learning rate of 

1 × 10−4  during training for constant policy. As shown in 

Table 3, employing “a poly” learning rate of (20) (with 

𝑝𝑜𝑤𝑒𝑟 = 0.9) and using the same batch size and same training  
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TABLE 4. 

ABLATION STUDY TO EVALUATE THE EFFECT OF THE 

DESINED SAM BLOCK BY USING DIFFERENT 

BACKBONE AND LOSS FUNCTIONS ON THE TOTAL-

TEXT [43] VALIDATION SET. 

Model Backbone 
Attention 

module 

Loss 

function 
Iteration H 

Baseline ResNet18 -- BCE 200K 79.3 

Baseline ResNet18 -- FL 200K 83.4 

Proposed ResNet18 SAM FL 200K 84.9 

Proposed ResNet50 SAM FL 200K 86.5 

 

iterations yields 2.75% and 9.87% better performance than 

employing “step” and “constant” learning rate policy, 

respectively. The “constant” learning rate does not improve the 

H-mean performance of the model, and significantly has la 

ower performance in terms of H-mean from other learning rate 

policies.Therefore, we ignored it in the rest of our experiments. 

Fixing the batch size and increasing the training iteration to 

100K improves the performance to 71.81% (1.58↑); 

By increasing the batch size and the same iteration of 50K, 

we still experienced increased H-mean performance. We then 

reduced the batch size to 4 and found that comparable 

performance remains (71.81% versus 72.58%). Ultimately, we 

applied a batch size of 4 and 200K iterations to maintain 

similar training iterations as a “step” policy. We observed a 

significant H-mean performance of 83.26 (7.91% 

improvement over the “step” policy). 

 

E. Effect of the Designed SAM, Feature Extraction 

Backbone, and Loss Functions 

We conducted the following experiments on the benchmark 

Total-Text dataset to see the effect of the designed SAM block, 

different feature extraction backbones, and loss functions in 

the baseline and proposed model, shown in Table 4. We 

employed the “poly” learning policy and SGD+Momentom 

optimizer in all these experiments and set the batch size to 4. 

We first eliminated the SAM and used the ResNet18 

backbone to compare the effect of FL in (18) and BCE loss in 

(19). It can be seen from Table 4 that the model with focal loss 

outperformed the model with BCE loss using a similar setup 

of the model because this loss is more robust in challenging 

cases like the vertical or different scale of the text and designed 

to strike the imbalance issue of positive or negative text 

existing in the scene image. Then by applying the SAM to the 

architecture, as seen from Table 4, the H-mean performance 

boosted on a similar setup by ~1.5%, which confirms its 

effectiveness in the utilized architecture. 

Recent methods in scene text detection [53-60] use 

ResNet50 instead of ResNet18 due to its deeper architecture 

and increased model capacity, enabling better feature 

representation and performance for handling complex and  

 

 

TABLE 5. 

QUANTITATIVE COMPARISON OF THE PROPOSED 

MODEL AMONG SOME OF THE RECENT METHODS ON 

TOTAL-TEXT DATASET. 

Method 
Total-Text 

FPS 
Precision Recall H-mean 

CRAFT [15] 87.6 79.9 83.6 6.00 

PSENet [34] 84.0 78.0 80.9 2.70 

TextSnake [28] 82.7 74.5 78.4 1.10 

DBNet [33] 87.1 82.5 84.7 19.0 

DRRG [54] 86.5 84.9 85.7 3.50 

FCENet [55] 89.3 82.5 85.8 – 

PCR [56] 88.5 82.0 85.2 10.7 

TextBPN [57] 90.3 84.7 87.4 10.6 

TextDCT[53] 87.2 82.7 84.9 – 

ABCNetV2[58] 89.2 84.1 87.0 10.0 

FSG [52] 90.7 85.7 88.1 13.1 

TPSNet [59] 89.2 85.0 86.6 11.6 

LeafText [60] 90.8 84.0 87.3 – 

Baseline 88.8 78.7 83.4 31.0 

Proposed Model 90.5 82.9 86.5 22.0 

 

diverse visual patterns in text regions. We use the ResNet50 as 

our final feature extraction backbone to compare the recent 

models fairly. As shown, ResNet50 improved the detection 

performance of the model in terms of H-mean by ~1.5% 

compared to using ResNet18 because it allows the model to 

capture more complex and high-level features from the input 

images. The deeper architecture of ResNet50 provides a larger 

receptive field, which means that the network can consider a 

broader context of the input image. 

 

F. Comparison with State-of-the-Art Text Detection 

Methods 

We also compare our proposed model with several state-of-

the-art scene text detectors [15, 28, 33, 34, 52-60] in Table 5 

and Table 6 across three benchmark datasets: Total-Text, 

ICDAR15 [44], and MSRA-TD500 [42]. The proposed model 

utilizes a ResNet50 and the designed SAM block. The baseline 

model leverages a ResNet18 in its backbone as a feature 

extractor. Despite our final proposed model being pre-trained 

on a subset of synthetic dataset images and featuring a 

straightforward design, it achieved competitive performance in 

accuracy and efficiency, outperforming many recent state-of-

the-art methods that often undergo pretraining on multiple 

datasets and involve complex design and post-processing.  

The results in Table 5 demonstrate that the proposed model 

significantly outperforms the baseline model on the Total-Text 

dataset, which consists of many challenging text images, 

including curved and irregular text instances. The 

effectiveness of the SAM module is particularly evident in its 

recall performance, improving by approximately 4% 

compared to the baseline. 
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TABLE 6. 

QUANTITATIVE COMPARISON OF THE PROPOSED 

MODEL AMONG SOME OF THE RECENT TEXT 

DETECTION METHODS ON ICDAR15 AND MSRA-TD500 

DATASETS. 

Method 

ICDAR15 MSRA-TD500 

P
recisio

n
 

R
ecall 

H
-m

ean
 

P
recisio

n
 

R
ecall 

H
-m

ean
 

EAST [21] 83.6 73.5 78.2 – – – 

Pixellink [27] 82.8 81.6 82.2 83.0 73.2 77.8 

CRAFT [15] 82.2 77.8 82.2 88.2 78.2 82.9 

PSENet [34] 86.9 84.5 85.7 – – – 

TextSnake [28] 84.9 80.4 82.6 83.2 73.9 78.3 

DBNet [33] 86.8 78.4 82.3 91.5 79.2 84.9 

DRRG [54] 88.5 84.7 86.6 88.0 82.3 85.0 

FCENet [55] 90.1 82.6 86.2 – – – 

PCR [56] – – – 87.6 77.8 82.4 

TextBPN [57] – – – 86.6 84.5 85.6 

TextDCT[53] 88.9 84.8 86.8 – – – 

ABCNetV2[58] 90.4 86.0 88.1 89.4 81.3 85.2 

FSG [52] 90.9 87.3 89.1 91.6 84.8 88.1 

TPSNet [59] 90.5 85.1 87.7 – – – 

LeafText [60] 88.9 82.3 86.1 92.1 83.8 87.8 

Baseline 87.8 77.6 82.4 87.6 79.4 83.3 

Proposed Model 90.3 81.3 85.6 89.8 82.4 85.9 

 

As indicated in Table 5, the final model also demonstrated 

excellent performance in terms of Frames per second (FPS), 

achieving a rate of 22 FPS during inference, surpassing several 

other detectors. This high FPS capability highlights the 

applicability of our model in real-time detection applications. 

It is also worth mentioning that the designed SAM has minimal 

impact on the model's inference time.  

As shown in Table 6, the designed SAM block and 

ResNet50 feature extractor boosted the performance of the 

proposed model by ~3% and ~2.5% in terms of H-mean 

performance on the ICDAR15 and MSRA-TD500 datasets, 

respectively, which are explicitly designed for multi-oriented 

scene text detection. The well performances on these datasets, 

confirm the proposed model’s capability in detecting 

challenging text instances that are abundant in ICDAR15 and 

MSRA-TD500 datasets. 

Finally, we present qualitative results in Figure 3, 

showcasing the detection performance of our proposed model 

on various samples from the Total-Text, ICDAR15, and 

MSRA-TD500 datasets. The results demonstrate the model's 

effectiveness in handling challenging cases, including multi-

oriented, vertical, and curved text, small and complex fonts, 

and different languages, indicating its robustness and 

versatility across diverse scene text scenarios. 

 

 

 

Fig. 3. Qualitative results of our final proposed method on 

benchmark datasets: (a) Total-Text [43], (b) ICDAR15 [44], and 

(c) MSRA-TD500 [42]. Detected text instances are shown with 

green color. 

 

G. Limitation and Future Work for improvement 

The presented model exhibits a significant limitation in 

cases where two-word instances in the image are closely 

positioned (i.e. when the first word's last character is close to 

the second word's first character). This scenario and the 

detection of crossed-word instances pose challenges and 

remain an unsolved problem in segmentation-based text 

detection architectures. Additionally, the proposed model 

encounters difficulty accurately detecting text instances under 

severe low resolution, low contrast, and occlusion conditions. 

To address these limitations, the following suggested future 

work may enhance the model's ability to detect cha text 

instances. (1) One promising avenue for future work is to 

leverage recent advancements in natural language processing 

algorithms. Specifically, integrating pre-trained language 

model modules such as Generative Pre-training Transformer 

(GPT) [62] into the text detection and recognition framework 

could prove beneficial. By employing compositionality 

techniques [63, 64] alongside the language model, the model 

may be better equipped to infer and reconstruct the uncaptured 

characters in the detected text instances. (2) Another potential 

area for future research is exploring context-aware object 

interaction. 

By incorporating contextual information from the 

surrounding objects and the overall scene, the model could 

better understand the text instances' spatial relationships and 
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textual coherence. This context-aware approach might 

enhance the model's ability to detect accurately and segment 

text instances closely intertwined or obscured by visual 

obstacles. (3) Given the challenges posed by low resolution, 

low contrast, and occlusion, another future direction is to 

explore adversarial training techniques. It could become more 

robust against various types of image degradation and 

perturbations by incorporating adversarial examples during the 

model's training process. This enhanced robustness might 

improve the model's performance in adverse real-world 

conditions, leading to more reliable text detection results. 

 

V. Conclusions 

This paper introduced a simple yet effective segmentation-

based architecture for detecting text of arbitrary shapes in wild 

images. We thoroughly investigated deep-learning optimizers 

and loss functions applicable to our baseline pipeline. 

Additionally, we designed a specific attention block, the 

segmentation-based attention module (SAM), to focus on 

regions more likely to contain text instances. Through 

extensive ablation studies, we assessed the impact of the 

proposed module and analyzed different optimization 

algorithms and loss functions. Our experiments demonstrated 

that the SGD + Momentum optimizer with a "poly" learning 

rate policy offers superior detection performance, and the focal 

loss-based loss function proves more robust than binary cross-

entropy loss. Comparing our model to recent state-of-the-art 

scene text detection methods on three benchmark datasets, our 

final model with the designed SAM significantly outperforms 

the baseline model and achieves competitive detection 

performance and efficiency. We also discussed the limitations 

of our architecture and outlined future research directions to 

further enhance text detection capabilities. 
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