تعداد نشریات | 31 |
تعداد شمارهها | 700 |
تعداد مقالات | 6,843 |
تعداد مشاهده مقاله | 11,201,579 |
تعداد دریافت فایل اصل مقاله | 7,514,522 |
( 2304-8012 ) Intuitionistic fuzzy type basic uncertain information | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 13، دوره 20، شماره 5، آذر و دی 2023، صفحه 189-197 اصل مقاله (168.83 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2023.7840 | ||
نویسندگان | ||
L. S. Jin1؛ R. R. Yager2؛ C. Ma* 3؛ L. M. Lopez4؛ R. M. Rodrguez4؛ T. Senapati5؛ R. Mesiar6 | ||
1School of Automobile and Traffic Engineering, Hubei University of Arts and Sciences, Xiangyang, 441053, China; School of Business, Nanjing Normal University, Nanjing, China | ||
2Machine Intelligence Institute, Iona College, New Rochelle, NY | ||
3Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang, 441053, China; School of Automobile and Traffic Engineering, Hubei University of Arts and Sciences, Xiangyang, 441053, China | ||
4Department of Computer Science, University of Jaen, 23071-Jaen, Spain | ||
5Department of Mathematics, Padima Janakalyan Banipith, Kukrakhupi, Jhargram, 721517, India | ||
6Faculty of Civil Engineering, Slovak University of Technology, Radlinskho 11, Sk-810 05 Bratislava, Slovakia; Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, CE IT4Innovations, 30. dubna 22, 701 03 Ostrava, Czech Republic | ||
چکیده | ||
Recently, a new paradigm for uncertain information has been proposed that can effectively handle various types of uncertainty in decision-making problems. This approach utilizes a certainty degree, which is represented by a real number indicating the level of certainty associated with input values. However, just like intuitionistic fuzzy information can handle more problems that cannot be well modeled by fuzzy information, the certainty degree in basic uncertain information can also be intuitionistic fuzzy granule, which allows it to handle more uncertainty involved decision making situations. In this paper, we introduce the concept of intuitionistic fuzzy type basic uncertain information and explain its parameters. We also define a weighted arithmetic mean for aggregating this type of information and discuss different approaches for allocating induced weights based on trust preferred preference from four perspectives: (i) preference for higher certainty degrees; (ii) aversion to higher levels of uncertainty; (iii) preference for greater differences in certainty degrees; and (iv) preference for intuitionistic fuzzy certainties. Additionally, we explore trichotomic rules-based decision making using intuitionistic fuzzy type basic uncertain information. Finally, we present an objective-subjective evaluation numerical example utilizing these methods. | ||
کلیدواژهها | ||
Aggregation operator؛ basic uncertain information؛ information fusion؛ intuitionistic fuzzy type basic uncertain information؛ preference involved evaluation؛ rules-based decision making | ||
مراجع | ||
[1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
[2] M. Boczek, A. Hovana, O. Hutnk, M. Kaluszka, New monotone measure-based integrals inspired by scienti c impact problem, European Journal of Operational Research, 290 (2021), 346-357.
[3] M. Boczek, L. Jin, R. Mesiar, R. R. Yager, On monotonicity of the interval sugeno integral, IEEE Transactions on Fuzzy Systems, 29 (2021), 2825-2827.
[4] H. Bustince, J. Fernandez, A. Kolesarova, R. Mesiar, Generation of linear orders for intervals by means of aggregation functions, Fuzzy Sets and Systems, 220 (2013), 69-77.
[5] Z. S. Chen, L. Martinez, J. P. Chang, X. J. Wang, S. H. Xionge, K. S. Chin, Sustainable building material selection: A QFD- and ELECTRE III-embedded hybrid MCGDM approach with consensus building, Engineering Applications of Arti cial Intelligence, 85 (2019), 783-807.
[6] Z. S. Chen, L. Martnez, K. S. Chin, K. L. Tsui, Two-stage aggregation paradigm for HFLTS possibility distributions: A hierarchical clustering perspective, Expert Systems with Applications, 104 (2018), 43-66.
[7] Z. S. Chen, X. J. Wang, K. S. Chin, K. L. Tsui, L. Martinez, Individual semantics building for HFLTS possibility distribution with applications in domain-speci c collaborative decision making, IEEE Access, 6 (2018), 78803-78828.
[8] Z. S. Chen, C. Yu, K. S. Chin, L. Martinez, An enhanced ordered weighted averaging operators generation algorithm with applications for multicriteria decision making, Applied Mathematical Modelling, 71 (2019), 467-490.
[9] Z. S. Chen, X. Zhang, R. M. Rodriguez, W. Pedrycz, L. Martnez, Expertise-based bid evaluation for construction-contractor selection with generalized comparative linguistic ELECTRE III, Automation in Construction, 125 (2021),103578.
[10] Z. S. Chen, X. Zhang, R. M. Rodriguez, W. Pedrycz, L. Martnez, M. J. Skibniewski, Expertise-structure and risk-appetite-integrated two-tiered collective opinion generation framework for large-scale group decision making, IEEETransactions on Fuzzy Systems, 30 (2022), 5496-5510.
[11] Z. S. Chen, M. D. Zhou, K. S. Chin, A. Darko, X. J. Wang, W. Pedrycz, Optimized decision support for BIM maturity assessment, Automation in Construction, 149 (2023), 104808.
[12] W. L. Gau, D. J. Buehrer, Vague sets, IEEE Transactions on Systems, Man, and Cybernetics, 23 (1993), 610-614.
[13] M. Grabisch, J. L. Marichal, R. Mesiar, E. Pap, Aggregation functions, Cambridge University Press, In Proceedings of the 2008 6th International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, (2008), 1-7.
[14] Q. Huang, J. Xu, Rethinking environmental bureaucracies in river chiefs system (RCS) in China: A critical literature study, Sustainability, 11 (2019), 1608.
[15] L. Jin, Z. S. Chen, J. Y. Zhang, et al., Bi-polar preference based weights allocation with incomplete fuzzy relations, Information Sciences, 621 (2023), 308-318.
[16] L. Jin, R. Mesiar, S. Borkotokey, M. Kalina, Certainty aggregation and the certainty fuzzy measures, International Journal of Intelligent Systems, 33 (2018), 759-770.
[17] L. Jin, R. Mesiar, A. Stupnanova, R. R. Yager, Some generalized integrals applied in scientometrics and related evaluation, IEEE Transactions on Emerging Topics in Computational Intelligence, 5 (2021), 846-853.
[18] L. Jin, R. Mesiar, A. Stupnanova, R. R. Yager, M. Kalina, On some construction method and orness measure of bi-capacities, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 29 (2021), 107-117.
[19] L. Jin, R. Mesiar, R. Yager, Ordered weighted averaging aggregation on convex poset, IEEE Transactions on Fuzzy Systems, 27 (2019), 612-617.
[20] L. Jin, R. Mesiar, R. R. Yager, Some decision taking rules based on ordering determined partitions, International Journal of General Systems, 50 (2021), 26-35.
[21] L. Jin, R. Mesiar, R. R. Yager, On WA expressions of induced OWA operators and inducing function based orness with application in evaluation, IEEE Transactions on Fuzzy Systems, 29 (2021), 1695-1700.
[22] L. S. Jin, Y. Q. Xu, Z. S. Chen, R. Mesiar, R. R. Yager, Relative basic uncertain information in preference and uncertain involved information fusion, International Journal of Computational Intelligence Systems, 15 (2022), 12.
[23] G. Li, R. R. Yager, X. Zhang, R. Mesiar, H. Bustince, L. Jin, Comprehensive rules-based and preferences induced weights allocation in group decision-making with BUI, International Journal of Computational Intelligence Systems, 15 (2022), 54.
[24] X. Liu, S. Han, Orness and parameterized RIM quanti er aggregation with OWA operators: A summary, International Journal of Approximate Reasoning, 48 (2008), 77-97.
[25] Z. Liu, F. Xiao, An interval-valued exceedance method in MCDM with uncertain satisfactions, International Journal of Intelligent Systems, 34 (2019), 2676-2691.
[26] R. Mesiar, S. Borkotokey, L. Jin, M. Kalina, Aggregation under uncertainty, IEEE Transactions on Fuzzy Systems, 26 (2018), 2475-2478.
[27] W. Pedrycz, Fuzzy relational equations with generalized connectives and their applications, Fuzzy Sets and Systems, 10 (1983), 185-201.
[28] G. Qian, E. Zhang, Z. Chen, R. Mesiar, R. R. Yager, L. Jin, Consistent construction of evaluation threshold values and rules for heterogeneous linguistic input information, International Journal of Computational Intelligence Systems, 14 (2021), 153.
[29] T. Takagi, M. Sugeno, Fuzzy identi cation of systems and its applications to modeling and control, IEEE Transactions on Systems, Man, and Cybernetics, SMC-15 (1985), 116-132.
[30] Z. Tao, X. Liu, L. Zhou, H. Chen, Rank aggregation based multi-attribute decision making with hybrid Z-information and its application, Journal of Intelligent and Fuzzy Systems, 37 (2019), 4231-4239.
[31] Z. Tao, Z. Shao, J. Liu, L. Zhou, H. Chen, Basic uncertain information soft set and its application to multi-criteria group decision making, Engineering Applications of Arti cial Intelligence, 95 (2020), 103871.
[32] P. Tiwari, Generalized entropy and similarity measure for interval-valued intuitionistic fuzzy sets with application in decision making, International Journal of Fuzzy System Applications, 10 (2021), 64-93.
[33] R. R. Yager, On ordered weighted averaging aggregation operators in multicriteria decisionmaking, IEEE Transactions on Systems, Man, and Cybernetics, 18 (1988), 183-190.
[34] R. R. Yager, Quanti er guided aggregation using OWA operators, International Journal of Intelligent Systems, 11 (1996), 49-73.
[35] R. R. Yager, D. P. Filev, Induced ordered weighted averaging operators, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 29 (1999), 141-150.
[36] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
[37] L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man, and Cybernetics, SMC-3 (1973), 28-44.
[38] L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 1 (1978), 3-28. | ||
آمار تعداد مشاهده مقاله: 143 تعداد دریافت فایل اصل مقاله: 261 |