تعداد نشریات | 31 |
تعداد شمارهها | 702 |
تعداد مقالات | 6,856 |
تعداد مشاهده مقاله | 11,209,629 |
تعداد دریافت فایل اصل مقاله | 7,520,873 |
Robust controller design for a class of MIMO nonlinear systems using TOPSIS function-link fuzzy cerebellar model articulation controller and interval type-2 fuzzy compensator | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 6، دوره 20، شماره 5، آذر و دی 2023، صفحه 89-107 اصل مقاله (1.35 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2023.43250.7618 | ||
نویسندگان | ||
Shayan Sepahvand1؛ Niloufar Amiri2؛ Mahdi Pourgholi1؛ Vahid Fakhari* 2 | ||
1Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran | ||
2Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran | ||
چکیده | ||
This research suggests a novel controller capable of achieving satisfactory tracking control performance for a class of multiple-input multiple-output (MIMO) systems. It aims to approximate an impracticable ideal controller to design directly due to insufficient knowledge about the plant or lack of data. The primary control unit is a function-link fuzzy cerebellar model articulation controller (FLFCMAC), applying the technique for order of preference by similarity to the ideal solution (TOPSIS) to eliminate less dominant rules in the fuzzy inference engine. A Function-link network (FLN) is added to this controller to enhance the tracking performance. Moreover, an interval type-2 fuzzy logic controller (IT2FLC) is proposed to improve the closed-loop system performance. Due to the caterpillar robot’s highly nonlinear dynamics and undesirable factors such as external disturbance and parametric uncertainties, online tuning laws are offered. In other words, the control system is designed to be robust. A Lyapunov stability approach is presented to show the stability of the controlled nonlinear plant. Furthermore, the adaptation laws are derived through this approach. Finally, numerical simulations are employed to validate the effectiveness and robustness of the controller for the caterpillar robot and the inverted double pendulum. | ||
کلیدواژهها | ||
Caterpillar robot؛ Fuzzy cerebellar model articulation controller؛ Interval type-2 fuzzy logic controller؛ Function-link network؛ Fuzzy inference engine؛ Online learning control system | ||
مراجع | ||
1] M. Aghaseyedabdollah, M. Abedi, M. Pourgholi, Supervisory adaptive interval type-2 fuzzy sliding mode control for planar cable-driven parallel robots using grasshopper optimization, Iranian Journal of Fuzzy Systems, 19(5) (2022),111-129.
[2] J. S. Albus, A new approach to manipulator control: The cerebellar model articulation controller (cmac), Journal of Dynamic Systems, Measurement, and Control, 97(3) (1975), 220-227.
[3] N. Amiri, V. Fakhari, S. Sepahvand, Motion control of a caterpillar robot using optimized feedback linearization and sliding mode controllers, International Journal of Dynamics and Control, 9(3) (2021), 1107-1116.
[4] C. H. Chiu, The design and implementation of a wheeled inverted pendulum using an adaptive output recurrent cerebellar model articulation controller, IEEE Transactions on Industrial Electronics, 57(5) (2010), 1814-1822.
[5] Z. J. Geng, C. L. McCullough, Missile control using fuzzy cerebellar model arithmetic computer neural networks, Journal of Guidance, Control, and Dynamics, 20(3) (1997), 557-565.
[6] A. Ghanbari, A. Rostami, S. M. R. S. Noorani, M. M. S. Fakhrabadi, Modeling and simulation of inchworm mode locomotion, Intelligent Robotics and Applications, (2008), 617-624.
[7] C. F. Hsu, C. M. Chung, C. M. Lin, C. Y. Hsu, Adaptive cmac neural control of chaotic systems with a pi-type learning algorithm, Expert Systems with Applications, 36(9) (2009), 11836-11843.
[8] T. T. Huynh, T. L. Le, C. M. Lin, A topsis multi-criteria decision method-based intelligent recurrent wavelet cmac control system design for mimo uncertain nonlinear systems, Neural Computing and Applications, 32(8) (2020), 4025-4043.
[9] T. T. Huynh, C. M. Lin, T. L. Le, H. Y. Cho, T. T. T. Pham, N. Q. K. Le, F. Chao, A new self-organizing fuzzy cerebellar model articulation controller for uncertain nonlinear systems using overlapped gaussian membership functions, IEEE Transactions on Industrial Electronics, 67(11) (2020), 9671-9682. [10] T. T. Huynh, C. M. Lin, T. L. Le, N. P. Nguyen, S. K. Hong, F. Chao, Wavelet interval type-2 fuzzy quad-function-link brain emotional control algorithm for the synchronization of 3d nonlinear chaotic systems, International Journal of Fuzzy Systems, 22(8) (2020), 2546-2564.
[11] T. L. Le, Design of intelligent controller using type-2 fuzzy cerebellar model articulation and 3d membership functions, International Journal of Fuzzy Systems, 25 (2022), 966-979.
[12] C. M. Lin, T. Y. Chen, Self-organizing cmac control for a class of mimo uncertain nonlinear systems, IEEE Transactions on Neural Networks, 20(9) (2009), 1377-1384.
[13] C. M. Lin, T. T. Huynh, Function-link fuzzy cerebellar model articulation controller design for nonlinear chaotic systems using topsis multiple attribute decision-making method, International Journal of Fuzzy Systems, 20(6)(2018), 1839-1856.
[14] C. M. Lin, V. H. La, T. L. Le, Dc{dc converters design using a type-2 wavelet fuzzy cerebellar model articulation controller, Neural Computing and Applications, 32(7) (2020), 2217-2229.
[15] C. M. Lin, H. Y. Li, Tsk fuzzy cmac-based robust adaptive backstepping control for uncertain nonlinear systems, IEEE Transactions on Fuzzy Systems, 20(6) (2012), 1147-1154.
[16] C. M. Lin, H. Y. Li, Dynamic petri fuzzy cerebellar model articulation controller design for a magnetic levitation system and a two-axis linear piezoelectric ceramic motor drive system, IEEE Transactions on Control Systems Technology, 23(2) (2015), 693-699.
[17] C. M. Lin, H. B. Nguyen, T. T. Huynh, A new self-organizing double function-link brain emotional learning controller for mimo nonlinear systems using sliding surface, IEEE Access, 9 (2021), 73826-73842.
[18] J. M. Mendel, Uncertain rule-based fuzzy systems: Introduction and new directions, Springer Cham, 2018.
[19] V. Moosavi, A. Karami, R. Aliramaee, High-resolution soil moisture mapping using pso-based optimized cerebellar model articulation controller (cmac), Science of The Total Environment, 857 (2023).
[20] J. Ozawa, I. Hayashi, N. Wakami, Formulation of cmac-fuzzy system, In [1992 Proceedings] IEEE International Conference on Fuzzy Systems, (1992), 1179-1186.
[21] M. Rahmani, Control of a caterpillar robot manipulator using hybrid control, Microsystem Technologies, 25(7) (2019), 2841-2854.
[22] M. Rahmani, A. Ghanbari, Computed torque control of a caterpillar robot manipulator using neural network, Advanced Engineering Forum, 15(3) (2016), 106-118.
[23] M. Rahmani, A. Ghanbari, M. M. Ettefagh, Hybrid neural network fraction integral terminal sliding mode control of an inchworm robot manipulator, Mechanical Systems and Signal Processing, 80 (2016), 117-136.
[24] M. Rahmani, A. Ghanbari, M. M. Ettefagh, Robust adaptive control of a bio-inspired robot manipulator using bat algorithm, Expert Systems with Applications, 56 (2016), 164-176.
[25] S. Sepahvand, M. Pourgholi, An adaptive fuzzy cerebellar model articulation controller for synchronization of chaotic systems, In 2019 6th International Conference on Control, Instrumentation and Automation (ICCIA), (2019), 1-6.
[26] S. F. Su, T. Tao, T. H. Hung, Credit assigned cmac and its application to online learning robust controllers, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 33(2) (2003), 202-213.
[27] C. H. Tsai, M. F. Yeh, Application of cmac neural network to the control of induction motor drives, Applied Soft Computing, 9(4) (2009), 1187-1196.
[28] J. Zhao, H. Hou, Q. Y. Huang, X. G. Zhong, P. S. Zheng, Design of optical tweezers manipulation control system based on novel self-organizing fuzzy cerebellar model neural network, Applied Sciences, 12(19) (2022). | ||
آمار تعداد مشاهده مقاله: 260 تعداد دریافت فایل اصل مقاله: 175 |