تعداد نشریات | 31 |
تعداد شمارهها | 700 |
تعداد مقالات | 6,843 |
تعداد مشاهده مقاله | 11,201,552 |
تعداد دریافت فایل اصل مقاله | 7,514,496 |
Fuzzy sets on uniform spaces | ||
Iranian Journal of Fuzzy Systems | ||
دوره 20، شماره 6، بهمن و اسفند 2023، صفحه 123-135 اصل مقاله (208.82 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2023.43774.7700 | ||
نویسندگان | ||
Daniel Jardón1؛ Iván Sánchez* 2؛ Manuel Sanchis3 | ||
1UACM | ||
2Departamento de Matemáticas, Universidad Autónoma Metropolitana, Mexico city, Mexico | ||
3Institut de Matemàtiques i Aplicacions de Castelló (IMAC), Universitat Jaume I, Castelló de la Plana, Spain | ||
چکیده | ||
Given a uniform space (X, U), we introduce, from the uniformity U, some uniformities on the set F(X) of all normal, upper semicontinuous with compact support fuzzy sets on X: the Skorokhod uniformity, the level-wise uniformity, the endograph uniformity and the sendograph uniformity. For metric spaces we prove that these uniformities coincide with the uniformities induced by the Skorokhod metric (the level-wise metric, the endograph metric and the sendograph metric, respectively). We study completeness of this class of uniform spaces. | ||
کلیدواژهها | ||
Fuzzy set؛ uniform space؛ hyperspace؛ Vietoris topology؛ Skorokhod metric؛ level-wise metric؛ endograph metric؛ sendograph metric؛ completeness | ||
مراجع | ||
[1] D. Buhagiar, B. A. Pasynkov, Supercomplete topological spaces, Acta Mathematica Hungarica, 115(4) (2007), 269- 279. [2] F. Castro-Company, S. Romaguera, P. Tirado, On the construction of metrics from fuzzy metrics and its application to the xed point theory of multivalued mappings, Journal of Fixed Point Theory and Applications, 226 (2015), 9 pages. [3] P. Diamond, P. Kloeden, Metric spaces of fuzzy sets: Theory and applications, Singapore: World Scientific, 1994.
[4] R. Engelking, General topology, Sigma Series in Pure Mathematics, Vol. 6, Heldermann Verlag, Berlin, 1989.
[5] J. J. Font, D. Sanchis, M. Sanchis, Completeness, metrizability and compactness in spaces of fuzzy-number-valued functions, Fuzzy Sets and Systems, 353 (2018), 124-136. [6] Y. H. Goo, J. S. Park, On the continuity of the Zadeh extensions, Journal of the Chungcheong Mathematical Society, 20(4) (2007), 525-533. [7] V. Gregori, J. J. Mi˘nana, A Banach contraction principle in fuzzy metric spaces de ned by means of t-conorms, Revista de la Real Academia de Ciencias Exactas, F´ısicas y Naturales. Serie A. Matem´aticas, 115(3) (2021), 129-139. [8] A. Hohti, On supercomplete uniform spaces. IV. Countable products, Fundamenta Mathematicae, 136 (1990), 115- 120. [9] H. Huan, Characterizations of endograph metric and Γ-convergence on fuzzy sets, Fuzzy Sets and Systems, 350 (2018), 55-84. [10] H. Huang, Some properties of Skorokhod metric on fuzzy sets, Fuzzy Sets and Systems, 437 (2022), 35-52.
[11] J. R. Isbell, Supercomplete spaces, Pacific Journal of Mathematics, 12 (1962), 287-290.
[12] D. Jard´on, I. S´anchez, Sensitivity and strong sensitivity on induced dynamical system, Iranian Journal of Fuzzy Systems, 18(4) (2021), 69-78. [13] D. Jard´on, I. S´anchez, M. Sanchis, Some questions about Zadeh's extension on metric spaces, Fuzzy Sets and Systems, 379 (2020), 115-124. [14] D. Jard´on, M. Sanchis, Pointwise convergence topology and function spaces in fuzzy analysis, Iranian Journal of Fuzzy Systems, 15(2) (2018), 1-21. [15] S. Y. Joo, Y. K. Kim, The Skorokhod topology on space of fuzzy numbers, Fuzzy Sets and Systems, 111 (2000), 497-501. [16] S. Kumar, Numerical solution of fuzzy fractional di usion equation by Chebyshev spectral method, Numerical Methods for Partial Differential Equations, 38(3) (2022), 490-508. [17] J. Kupka, On fuzzi cations of discrete dynamical systems, Information Sciences, 181 (2011), 2858-2872.
[18] J. Kupka, On Devaney chaotic induced fuzzy and set-valued dynamical systems, Fuzzy Sets and Systems, 177 (2011), 34-44. [19] E. Michael, Topologies on spaces of subsets, Transactions of the American Mathematical Society, 71(1) (1951), 152-182. [20] K. Morita, Completion of hyperspaces of compact sets and topological completion of open-closed maps, General Topology and its Applications, 4(3) (1974), 217-233. [21] T. Muthukumar, T. Jayakumar, D. P. Bharathi, Numerical solution of fuzzy neutral delay di erential equations by fth order Runge-Kutta Nystrom method, Journal of Applied Nonlinear Dynamics, 11(3) (2022), 703-717. [22] D. Qiu, S. Dong, Supremum metric on the space of fuzzy sets and common xed point theorems for fuzzy mappings, Information Sciences, 178(18) (2008), 3595-3604. [23] S. Romaguera, M. Sanchis, Completeness of hyperspaces on topological groups, Journal of Pure and Applied Algebra, 149 (2000), 287-293. [24] Z. Yang, L. Zhongqiang, F. Yuqiong, Z. Taihe, L. Zhang, The topological structure of the set of fuzzy numbers with Lp metric, Topology and its Applications, 312 (2022), 21 pages. [25] L. Zhang, The topological structure of fuzzy sets with sendograph metric, Topology and its Applications, 160(13) (2013), 1501-1506. | ||
آمار تعداد مشاهده مقاله: 430 تعداد دریافت فایل اصل مقاله: 481 |