تعداد نشریات | 30 |
تعداد شمارهها | 690 |
تعداد مقالات | 6,766 |
تعداد مشاهده مقاله | 11,001,765 |
تعداد دریافت فایل اصل مقاله | 7,412,034 |
ضد شکنندگی، چارچوبی جدید برای مدیریت سیستم اکولوژیکی اجتماعی آبهای زیرزمینی | ||
مخاطرات محیط طبیعی | ||
مقاله 4، دوره 13، شماره 39 - شماره پیاپی 1، فروردین 1403، صفحه 61-74 اصل مقاله (2.49 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22111/jneh.2023.45234.1948 | ||
نویسنده | ||
علی اکبر تقیلو* | ||
دانشیار جغرافیا و برنامه ریزی روستایی، دانشکده ادبیات و علوم انسانی، ارومیه | ||
چکیده | ||
مدیریت آب زیرزمینی برای پایداری خدمات آب از اهمیت بالایی برخوردار است. روش های بسیاری برای مدیریت آب های زیرزمینی استفاده شده است. تاکنون هیچ مطالعه ای در مورد ضد شکنندگی سیستم اجتماعی-اکولوژیکی (SES) آب های زیرزمینی انجام نشده است. ضد شکنندگی سیستم به فرآیندی اطلاق میشود که سیستم از پویاییها و رویدادهای داخلی و خارجی خوشش میآید زیرا از اختلالات بهره میبرد و خدمات خود را بهبود میبخشد. بنابراین هدف پژوهش حاضر ارائه یک چارچوب مفهومی برای مدیریت اجتماعی-اکولوژیکی آبهای زیرزمینی است. روش تحقیق بدین شرح است: ابتدا سیستم اجتماعی اکولوژیکی حفاظت از آبهای زیرزمینی و شکنندگی بر اساس اصول موجود تعریف شد. سپس دو مدل ضد شکنندگی و بومشناسی اجتماعی طالب با استفاده از مفهوم انتقال به هم ارتباط داده شدند. نتایج بحث در مورد رابطه بین دو مدل، نقاط ضعف مرتبط با عدم افشای دقیق افزونگی ضد شکنندگی آبهای زیرزمینی را در برابر اختلالات برجسته کرد. در نهایت، یک مدل سازگار اجتماعی-اکولوژیکی ضدشکننده با یک هدف، سه گونه و سه مرحله در سیستم آب زیرزمینی ساخته شد. هدف شامل: حذف اثرات منفی اختلالات و خطرات در سیستم آب زیرزمینی، از جمله روشها. مراحل انتقال انرژی، انتقال عملکرد و طراحی عنصر شامل: (1) تعیین اثرات اختلال به جای خود اختلال و خطرات، (2) تدوین خط مشی انتقال، و (3) اجرای خط مشی. این مقاله نه تنها ادبیات مدیریت آب های زیرزمینی را گسترش می دهد، بلکه چارچوب مناسبی را برای سیاست گذاران و مدیران آب فراهم می کند و می تواند در برنامه ریزی و مدیریت آب های زیرزمینی مفید باشد. | ||
کلیدواژهها | ||
ضد شکنندگی؛ سیستم اجتماعی- اکولوژیکی؛ انتقال؛ آب زیرزمینی؛ پویایی؛ افزونگی | ||
مراجع | ||
Aven, T. (2015). The concept of anti-fragility and its implications for the practice of risk analysis. Risk analysis, 35(3), 476-483. Awadh, S. M., Al-Mimar, H., & Yaseen, Z. M. (2021). Groundwater availability and water demand sustainability over the upper mega aquifers of the Arabian Peninsula and the western region of Iraq. Environment, Development and Sustainability, 23(1), 1-21. Balke, K. D., & Zhu, Y. (2008). Natural water purification and water management by artificial groundwater recharge. Journal of Zhejiang University SCIENCE B, 9(3), 221-226. Barbaro, S. E., Albrechtsen, H. J., Jensen, B. K., Mayfield, C. I., & Barker, J. F. (1994). Relationships between aquifer properties and microbial populations in the Borden aquifer. Geomicrobiology Journal, 12(3), 203-219. Berkes, F., Colding, J., & Folke, C. (Eds.). (2008). Navigating social-ecological systems: building resilience for complexity and change. Cambridge University Press. Bigurra-Alzati, C. A., Ortiz-Gómez, R., Vázquez-Rodríguez, G. A., López-León, L. D., & Lizárraga-Mendiola, L. (2020). Water conservation and green infrastructure adaptations to reduce water scarcity for residential areas with semi-arid climate: Mineral de la Reforma, Mexico. Water, 13(1), 45. Blečić, I., & Cecchini, A. (2020). Antifragile planning. Planning Theory, 19(2), 172-192. Blečić, I., & Cecchini, A. Erratum (2017) On the anti-fragility of cities and of their buildings. Blomquist, W. (2020). Beneath the surface: complexities and groundwater policy-making. Oxford Review of Economic Policy, 36(1), 154-170. Botjes, E., van den Berg, M., van Gils, B., & Mulder, H. (2021, September). Attributes relevant to antifragile organizations. In 2021 IEEE 23rd Conference on Business Informatics (CBI) (Vol. 1, pp. 62-71). IEEE. Bouchet, L., Thoms, M. C., & Parsons, M. (2019). Groundwater as a social-ecological system: A framework for managing groundwater in Pacific Small Island Developing States. Groundwater for Sustainable Development, 8, 579-589. Boulton, A. J., & Hancock, P. J. (2006). Rivers as groundwater-dependent ecosystems: a review of degrees of dependency, riverine processes, and management implications. Australian Journal of Botany, 54(2), 133-144. Chala, D. C., Quiñones-Bolaños, E., & Mehrvar, M. (2022). An integrated framework to model salinity intrusion in coastal unconfined aquifers considering intrinsic vulnerability factors, driving forces, and land subsidence. Journal of Environmental Chemical Engineering, 10(1), 106873. Cho, J. C., Cho, H. B., & Kim, S. J. (2000). Heavy contamination of a subsurface aquifer and a stream by livestock wastewater in a stock farming area, Wonju, Korea. Environmental Pollution, 109(1), 137-146. Earman, S., & Dettinger, M. (2011). Potential impacts of climate change on groundwater resources–a global review. Journal of water and climate change, 2(4), 213-229. Foster, S, Cherlet J (2014) The links between land use and groundwater: governance provisions and management strategies to secure a ‘sustainable harvest’. GWP Perspectives Paper. Global Water Partnership, Stockholm. Foster, S., & Van der Gun, J. (2016). Groundwater governance: key challenges in applying the global framework for action. Hydrogeology Journal, 24(4), 749-752. Galay, V. J. (1983). Causes of river bed degradation. Water resources research, 19(5), 1057-1090. Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., ... & Aureli, A. (2011). Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405(3-4), 532-560. Haxeltine, A., Whitmarsh, L., Bergman, N., Rotmans, J., Schilperoord, M., & Kohler, J. (2008). A Conceptual Framework for Transition Modeling. International journal of innovation and sustainable development, 3(1-2), 93-114. Hespanhol, L. (2017, June). More than smart, beyond resilient: Networking communities for antifragile cities. In Proceedings of the 8th International Conference on Communities and Technologies (pp. 105-114). Horvath, M., Arrate, D., & Dhillon, D. Evaluation of Subsidence Impacts on Flood Risks in the San Joaquin Basin. In World Environmental and Water Resources Congress 2017 (pp. 695-709). Ishida, S., Tsuchihara, T., Yoshimoto, S., & Imaizumi, M. (2011). Sustainable use of groundwater with underground dams. Japan agricultural research quarterly: JARQ, 45(1), 51-61. Kaplow, L. (2003). Transition policy: a conceptual framework. Kebede, S., Charles, K., Godfrey, S., MacDonald, A., & Taylor, R. (2021). Regional-scale interactions between groundwater and surface water under changing aridity: evidence from the River Awash Basin, Ethiopia. Hydrological Sciences Journal. Kiernan, K., Wood, C., & Middleton, G. (2003). Aquifer structure and contamination risk in lava flow: insights from Iceland and Australia. Environmental Geology, 43(7), 852-865. Kløve, B., Ala-Aho, P., Bertrand, G., Boukalova, Z., Ertürk, A., Goldscheider, N., ... & Widerlund, A. (2011). Groundwater-dependent ecosystems. Part I: Hydroecological status and trends. Environmental Science & Policy, 14(7), 770-781. Kurwadkar, S., Kanel, S. R., & Nakarmi, A. (2020). Groundwater pollution: Occurrence, detection, and remediation of organic and inorganic pollutants. Water Environment Research, 92(10), 1659-1668. Li, T., Dong, Y., & Liu, Z. (2020). A review of social-ecological system resilience: Mechanism, assessment and management. Science of the Total Environment, 723, 138113. Li, Y., Bi, Y., Mi, W., Xie, S., & Ji, L. (2021). Land-use change caused by anthropogenic activities increases fluoride and arsenic pollution in groundwater and human health risks. Journal of Hazardous Materials, 406, 124337. Mathias, J. D., Anderies, J. M., Baggio, J., Hodbod, J., Huet, S., Janssen, M. A., ... & Schoon, M. (2020). Exploring non-linear transition pathways in social-ecological systems. Scientific reports, 10(1), 1-12. Meijer, K., Boelee, E., Augustijn, D., & van der Molen, I. (2006). Impacts of the concrete lining of irrigation canals on availability of water for domestic use in southern Sri Lanka. Agricultural water management, 83(3), 243-251. Patranabis, S., Chakraborty, A., Nguyen, P. H., & Mukhopadhyay, D. (2015, April). A biased fault attack on the time redundancy countermeasure for AES. In International workshop on constructive side-channel analysis and secure design (pp. 189-203). Springer, Cham. Qian, H., Chen, J., & Howard, K. W. (2020). Assessing groundwater pollution and potential remediation processes in a multi-layer aquifer system. Environmental Pollution, 263, 114669. Rica, M., Petit, O., & Elena, L. G. (2017). Understanding groundwater governance through a social-ecological system framework–relevance and limits. In Advances in Groundwater Governance (pp. 55-72). CRC Press. Rodríguez, L. B., Cello, P. A., & Vionnet, C. A. (2006). Modeling stream-aquifer interactions in a shallow aquifer, Choele Choel Island, Patagonia, Argentina. Hydrogeology Journal, 14(4), 591-602. Scheurer, K., Alewell, C., Bänninger, D., & Burkhardt-Holm, P. (2009). Climate and land-use changes affecting river sediment and brown trout in alpine countries—a review. Environmental Science and Pollution Research, 16(2), 232-242. Singh, P., Kumar, P., Mehrotra, I., & Grischek, T. (2010). Impact of riverbank filtration on treatment of polluted river water. Journal of Environmental Management, 91(5), 1055-1062. Taghilou, A. A., & Aftab, A. (2022). Groundwater management in the framework of the socio-ecological system: a case study of Urmia plain, Iran. Sustainable Water Resources Management, 8(3), 1-13. Taleb, N. N. (2012). Antifragile: Things that gain from disorder (Vol. 3). Random House. Tang, W., Zhao, X., Motagh, M., Bi, G., Li, J., Chen, M., ... & Liao, M. (2022). Land subsidence and rebound in the Taiyuan basin, northern China, in the context of inter-basin water transfer and groundwater management. Remote Sensing of Environment, 269, 112792. Timashev, S. A. (2020, November). Supraresilience of bio-socio-technical infrastructures. In IOP Conference Series: Materials Science and Engineering (Vol. 962, No. 4, p. 042049). IOP Publishing. Wang, X. J., Zhang, J. Y., Shahid, S., Guan, E. H., Wu, Y. X., Gao, J., & He, R. M. (2016). Adaptation to climate change impacts on water demand. Mitigation and Adaptation Strategies for Global Change, 21(1), 81-99. Wang, X., & Lo, K. (2021). Just transition: A conceptual review. Energy Research & Social Science, 82, 102291. Xu, Y. S., Shen, S. L., Du, Y. J., Chai, J. C., & Horpibulsuk, S. (2013). Modeling the cutoff behavior of the underground structure in a multi-aquifer-aquitard groundwater system. Natural hazards, 66(2), 731-748. Yilmaz, M. E. T. İ. N. (2003). Control of groundwater by underground dams. MC Thesis, Dept. of Civil. METU, Ankara. Yu, H., Wu, X., & Wu, X. (2020). An extended object-oriented Petri net model for mission reliability evaluation of phased-mission system with time redundancy. Reliability Engineering & System Safety, 197, 106786. Zeng, R., & Cai, X. (2014). Analyzing streamflow changes: irrigation-enhanced interaction between aquifer and streamflow in the Republican River basin. Hydrology and Earth System Sciences, 18(2), 493-502 | ||
آمار تعداد مشاهده مقاله: 241 تعداد دریافت فایل اصل مقاله: 234 |