تعداد نشریات | 32 |
تعداد شمارهها | 732 |
تعداد مقالات | 7,041 |
تعداد مشاهده مقاله | 11,574,255 |
تعداد دریافت فایل اصل مقاله | 7,931,272 |
Jackson-type approximation for fuzzy-valued functions by means of trapezoidal functions | ||
Iranian Journal of Fuzzy Systems | ||
دوره 20، شماره 6، بهمن و اسفند 2023، صفحه 49-62 اصل مقاله (187.42 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2023.43522.7655 | ||
نویسندگان | ||
Juan J. Font* 1؛ Sergio Macario2 | ||
1Department of Mathematics Universitat Jaume I Spain | ||
2Campus Riu Sec | ||
چکیده | ||
In this paper we provide new several Jackson-type approximations results for continuous fuzzy-number-valued functions which improve several previous ones. We use alternative techniques adapted from Interval Analysis which rely on the gH-difference (which might not exist) and the generalized difference (which might lack the cancellation law ) of fuzzy numbers. | ||
کلیدواژهها | ||
Modulus of continuity؛ fuzzy numbers؛ approximation error | ||
مراجع | ||
[1] G. A. Anastassiou, Fuzzy mathematics: Approximation theory, Studies in Fuzziness and Soft Computing Series, Springer, Berlin, 2010. [2] G. A. Anastassiou, S. G. Gal, On a fuzzy trigonometric approximation theorem of Weierstrass-type, The Journal of Fuzzy Mathematics, 9(3) (2001), 701-708. [3] B. Bede, S. G. Gal, Best approximation and Jackson-type estimates by generalized fuzzy polynomials, Journal of Concrete and Applicable Mathematics, 2(3) (2004), 213-232. [4] B. Bede, L. Stefanini, A generalization of Hukuhara di erence and division for interval and fuzzy arithmetic, Fuzzy Sets and Systems, 230 (2013), 119-141. [5] D. Chen, Degree of approximation by superpositions of a sigmoidal function, Approximation Theory and its Applications, 9(3) (1993), 17-28.
[6] P. Diamond, P. Kloeden, Metric spaces of fuzzy sets: Theory and applications, World Scienti c, Singapore, 1994.
[7] J. J. Font, S. Macario, Constructive approximation of continuous interval valued functions, Numerical Functional Analysis and Optimization, 43(2) (2022), 127-144. [8] J. J. Font, D. Sanchis, M. Sanchis, A version of the Stone-Weierstrass theorem in fuzzy analysis, Journal of Nonlinear Sciences and Applications, 10 (2017), 4275-4283. [9] S. G. Gal, A fuzzy variant of the Weierstrass approximation theorem, The Journal of Fuzzy Mathematics, 1(4) (1993), 865-872. [10] S. G. Gal, Degree of approximation of fuzzy mappings by fuzzy polynomials, The Journal of Fuzzy Mathematics, 2(4) (1994), 847-853. [11] S. G. Gal, Approximation theory in fuzzy setting, in Handbook of Analytic-Computational Methods in Applied Mathematics, ed. G. Anastassiou. Chapman and Hall/CRC, Boca Raton, 2000. [12] R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31-42.
[13] L. T. Gomes, L. C. Barros, A note on the generalized di erence and the generalized di erentiability, Fuzzy Sets and Systems, 280 (2015), 142-145. [14] B. I. Hong, N. Hahm, Approximation order to a function in C(R) by superposition of a sigmoidal function, Applied Mathematical Letters, 15 (2002), 591-597. [15] B. I. Hong, N. Hahm, A note on neural network approximation with a sigmoidal function, Applied Mathematical Sciences, 10(42) (2016), 2075-2085. [16] D. Jackson, Uber die genauigkeit der annaherung stetiger funktionen durch ganze rationale funktionen gegebenen grades und trigonometrische summen gegebener ordnung (On the precision of the approximation of continuous functions by polynomials of given degree and by trigonometric sums of given order), Preisschrift und Dissertation, Univ. Gottingen, June 14, 1911.
[17] D. R. Jardon, M. Sanchis, Pointwise convergence topology and function spaces in fuzzy analysis, Iranian Journal of Fuzzy Systems, 15(2) (2018), 1-21. [18] R. I. Jewett, A variation on the Stone-Weierstrass theorem, Proceedings of the AMS - American Mathematical Society, 14 (1963), 690-693. [19] E. Y. Ozkan, Approximation by fuzzy (p, q)-Bernstein-Chlodowsky operators, Sahand Communications in Mathematical Analysis, 19(2) (2022), 113-132.
[20] E. Y. Ozkan, Inequalities for approximation of new de ned fuzzy post-quantum Bernstein polynomials via intervalvalued fuzzy numbers, Symmetry, 14 (2022), 696.
[21] E. Y. Ozkan, B. Hazarika, Approximation results by fuzzy Bernstein type rational functions via interval-valued fuzzy number, Soft Computing, 27 (2023), 6893-6901. [22] S. Panahian Fard, Z. Zainuddin, Interval type-2 fuzzy neural networks version of the Stone-Weierstrass theorem, Neurocomputing, 74(14) (2011), 2336-2343. [23] J. B. Prolla, On the Weierstrass-Stone theorem, Journal of Approximation Theory, 78 (1994), 299-313.
[24] L. Stefanini, A generalization of Hukuhara di erence for interval and fuzzy arithmetic, D. Dubois, M.A. Lubiano, H. Prade, M.A. Gil, P. Grzegorzewski, O. Hryniewicz (Eds.), Soft Methods for Handling Variability and Imprecision, Series on Advances in Soft Computing, vol. 48, Springer (2008), An extended version is available online at the RePEc service: http://econpapers.repec.org/RAS/pst233.htm. [25] L. Stefanini, A generalization of Hukuhara di erence and division for interval and fuzzy arithmetic, Fuzzy Sets and Systems, 161 (2010), 1564-1584. [26] Y. R. Syau, E. S. Lee, Fuzzy Weirstrass theorem and convex fuzzy mappings, Computers and Mathematics with Applications, 51 (2006), 1741-1750. [27] J. Szabados, On a problem of R. DeVore, Acta Mathematica Hungarica, 27(1-2) (1976), 219-223. | ||
آمار تعداد مشاهده مقاله: 340 تعداد دریافت فایل اصل مقاله: 409 |