تعداد نشریات | 31 |
تعداد شمارهها | 712 |
تعداد مقالات | 6,941 |
تعداد مشاهده مقاله | 11,411,487 |
تعداد دریافت فایل اصل مقاله | 7,790,667 |
SHARP ELEMENTS IN d0-ALGEBRAS | ||
Iranian Journal of Fuzzy Systems | ||
دوره 20، شماره 6، بهمن و اسفند 2023، صفحه 85-103 اصل مقاله (271.16 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2023.43899.7730 | ||
نویسندگان | ||
Anna Avallone؛ Paolo Vitolo* | ||
University of Basilicata, Department of Mathematics, Computer Science and Economics | ||
چکیده | ||
We introduce the notions of Sasaki mapping and of sharp elements on a d0-algebra. We investigate the relationships of sharp elements with Sasaki mappings and with central elements, thus generalizing some results known for D-lattices. Namely, we give a characterization of sharp elements, by means of Sasaki mappings, which extends a result of Bennett and Foulis; we also prove that an element is central if and only if it is a sharp element and every element is compatible with it: this generalizes a result of Riecanová. | ||
کلیدواژهها | ||
BCK-algebra؛ D-lattice؛ effect algebra؛ orthomodular lattice؛ Sasaki mapping؛ central element | ||
مراجع | ||
[1] A. Avallone, G. Barbieri, P. Vitolo, H. Weber, Decomposition of e ect algebras and the Hammer-Sobczyk theorem, Algebra Universalis, 60(1) (2009), 1-18. [2] A. Avallone, A. de Simone, P. Vitolo, E ect algebras and extensions of measures, Bollettino dell’Unione Matematica Italiana, 9(2) (2006), 423-444. [3] A. Avallone, P. Vitolo, Hahn decomposition of modular measures and applications, Annales Soc. Math. Polon. Series I: Commentationes Mathematicae, 43 (2003), 149-168. [4] A. Avallone, P. Vitolo, Decomposition and control theorems on e ect algebras, Scientiae Mathematicae Japonicae, 58(1) (2003), 1-14. [5] A. Avallone, P. Vitolo, Lattice uniformities on e ect algebras, International Journal of Theoretical Physics, 44(7) (2005), 793-806. [6] A. Avallone, P. Vitolo, Lyapunov decomposition of measures on e ect algebras, Scientiae Mathematicae Japonicae, 69(1) (2009), 79-87. [7] A. Avallone, P. Vitolo, Hahn decomposition in d0-algebras, Soft Computing, 23(22) (2019), 11373-11388.
[8] A. Avallone, P. Vitolo, Lyapunov decomposition in d0-algebras, Rendiconti del Circolo Matematico di Palermo Series 2, 69 (2020), 837-859. [9] A. Avallone, P. Vitolo, The center of a d0-algebra, Reports on Mathematical Physics, 86(1) (2020), 63-78.
[10] A. Avallone, P. Vitolo, Kalmbach Measurability in d0-algebras, Mathematica Slovaca, 72(6) (2022), 1387-1402.
[11] A. Avallone, P. Vitolo, Decomposition of d0-algebras, Submitted for publication.
[12] M. K. Bennett, D. J. Foulis, E ect algebras and unsharp quantum logics, Foundations of Physics, 24(10) (1994), 1331-1352. [13] M. K. Bennett, D. J. Foulis, Phi-symmetric e ect algebras, Foundations of Physics, 25(12) (1994), 1699-1722.
[14] F. Chovanec, F. Kˆopka, D-lattices, International Journal of Theoretical Physics, 34 (1995), 1297-1302.
[15] C. Constantinescu, Some properties of spaces of measures, Atti del Seminario Matematico e Fisico dell’ Universita di Modena, 35(suppl.), Modena, Italy, 1989. [16] A. Dvureˇcenskij, States on weak pseudo EMV-algebras. I. States and states morphisms, Iranian Journal of Fuzzy Systems, 19(4) (2022), 1-15. [17] A. Dvureˇcenskij, States on weak pseudo EMV-algebras. II. Representations of states, Iranian Journal of Fuzzy Systems, 19(4) (2022), 17-26. [18] A. Dvureˇcenskij, M. G. Graziano, Remarks on representations of minimal clans, Tatra Mountains Mathematical Publications, 15 (1998), 31-53. [19] A. Dvureˇcenskij, M. G. Graziano, On representations of commutative BCK-algebras, Demonstratio Mathematica, 32(2) (1999), 227–246. [20] A. Dvureˇcenskij, S. Pulmannov´a, New trends in quantum structures, Kluwer Academic Publishers, Dordrecht, 2000. [21] D. J. Foulis, A note on orthomodular lattices, Portugaliae Mathematica, 21(1) (1962), 65-72.
[22] J. J. M. Gabri¨els, S. M. Gagola, M. Navara, Sasaki projections, Algebra Universalis, 77(3) (2017), 305-320.
[23] M. Nakamura, The permutability in a certain orthocomplemented lattice, Kodai Mathematical Seminar Reports, 9(4) (1957), 158-160. [24] Z. Rieˇcanov´a, Compatibility and central elements in e ect algebras, Tatra Mountains Mathematical Publications, 16 (1999), 151-158. [25] Z. Rieˇcanov´a, Subalgebras, intervals and central elements of generalized e ect algebras, International Journal of Theoretical Physics, 38 (1999), 3209-3220. [26] M. Rosa, P. Vitolo, Blocks and compatibility in d0-algebras, Algebra Universalis, 78(4) (2017), 489-513.
[27] M. Rosa, P. Vitolo, Topologies and uniformities on d0-algebras, Mathematica Slovaca, 67(6) (2017), 1301-1322.
[28] M. Rosa, P. Vitolo, Measures and submeasures on d0-algebras, Ricerche di Matematica, 67 (2018), 373-386.
[29] U. Sasaki, Orthocomplemented lattices satisfying the exchange axiom, Journal of Science of the Hiroshima University, Series A, 17 (1954), 293-302. [30] K. D. Schmidt, Minimal clans: A class of ordered partial semigroups including Boolean rings and lattice-ordered groups, in Semigroups, theory and applications (Oberwolfach, 1986), volume 1320 of Lecture Notes in Math., Springer, Berlin, (1988), 300-341. [31] K. D. Schmidt, Jordan decompositions of generalized vector measures, volume 214 of Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, Harlow, 1989. [32] P. Vitolo, A generalization of set-di erence, Mathematica Slovaca, 61(6) (2011), 835-850.
[33] H. Weber, An abstraction of clans of fuzzy sets, Ricerche di Matematica, 46(2) (1997), 457-472.
[34] O. Wyler, Clans, Compositio Mathematica, 17 (1965), 172-189. | ||
آمار تعداد مشاهده مقاله: 276 تعداد دریافت فایل اصل مقاله: 344 |