تعداد نشریات | 31 |
تعداد شمارهها | 700 |
تعداد مقالات | 6,841 |
تعداد مشاهده مقاله | 11,184,654 |
تعداد دریافت فایل اصل مقاله | 7,507,982 |
An Effective Damping Control Approach in Grid-Connected Converters | ||
International Journal of Industrial Electronics Control and Optimization | ||
مقاله 3، دوره 6، شماره 4، اسفند 2023، صفحه 271-281 اصل مقاله (1.06 M) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22111/ieco.2023.46198.1495 | ||
نویسندگان | ||
Anwer Jalal Ali* 1؛ Sirwan Shazdeh1؛ Hassan Bevrani2؛ Rahmatollah Mirzaei3؛ Qobad Shafiee4 | ||
1SMGRC, Dep. of Electrical Eng., University of Kurdistan, Sanandaj, Iran | ||
2SMGRC, Dep. of Electrical Eng., University of Kurdistan, Sanandaj, Iran. | ||
3Dept. of Electrical Engineering, University of Kurdistan, Iran | ||
4Dept. of Electrical & Computer Engineering, University of Kurdistan, Sanandaj, Kurdistan, Iran | ||
چکیده | ||
The primary objective of this paper is to address the adverse effects of active power fluctuations on grid-connected converters. One of the challenges in integrating high levels of solar photovoltaic power into the utility grid is the lack of inertia from converter-based resources. This paper proposes a solution to this challenge by synthesizing additional inertia and damping properties using power electronics converters. They emulate the inertia and damping properties of synchronous generators. The paper discusses different approaches to achieving effective damping control in grid-connected converters. It proposes a genetic algorithm optimization tool to optimize virtual damping and inertia parameters. The goal is to suppress oscillations and ensure stable grid operation. The proposed method is evaluated in both time-domain and frequency-domain analyses. The simulation results demonstrate the validity of the optimization technique and implementation procedure. Using virtual inertia and damping properties ensures stable grid operation and improves the integration of solar photovoltaic power into the utility grid. The paper provides a detailed discussion of the approach, optimization tool, and simulation results, highlighting the effectiveness of the proposed method. | ||
کلیدواژهها | ||
grid connected converters؛ virtual synchronous generator؛ swing equation؛ damping control | ||
مراجع | ||
[1] S.-J. Yoon and K.-H. Kim, “Harmonic Suppression and Stability Enhancement of a Voltage Sensorless Current Controller for a Grid-Connected Inverter Under Weak Grid,” IEEE Access, vol. 10, pp. 38575–38589, 2022, doi: 10.1109/ACCESS.2022.3166592.
[2] Y. Tu, J. Liu, T. Liu, and X. Cheng, “Impedance-Based Stability Analysis of Large-Scale PV Station under Weak Grid Condition Considering Solar Radiation Fluctuation,” in 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), 2018, pp. 3934–3939. doi: 10.23919/IPEC.2018.8507415. [3] M. M. Gulzar, A. Iqbal, D. Sibtain, and M. Khalid, “An Innovative Converterless Solar PV Control Strategy for a Grid Connected Hybrid PV/Wind/Fuel-Cell System Coupled With Battery Energy Storage,” IEEE Access, vol. 11, pp. 23245 23259, 2023, doi: 10.1109/ACCESS.2023.3252891. [4] T. Kerdphol, F. S. Rahman, M. Watanabe, and Y. Mitani, Virtual Inertia Synthesis and Control. in Power Systems. Springer International Publishing, 2020. [Online]. Available: https://books.google.com/books?id=UTGjzQEACAAJ [5] P. Unruh, M. Nuschke, P. Strauss, and F. Welck, “Overview on Grid-Forming Inverter Control Methods,” Energies, vol. 13, p. 2589, 2020, doi: 10.3390/en13102589. [6] G. Kryonidis, K.-N. Malamaki, J. M. Mauricio, and C. Demoulias, “A new perspective on the synchronverter model,” Int. J. Electr. Power Energy Syst., vol. 140, p. 108072, 2022, doi: 10.1016/j.ijepes.2022.108072. [7] J. Fang, H. Li, Y. Tang, and F. Blaabjerg, “Distributed Power System Virtual Inertia Implemented by Grid-Connected Power Converters,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8488–8499, 2018, doi: 10.1109/TPEL.2017.2785218. [8] L. Huang, H. Xin, H. Yuan, G. Wang, and P. Ju, “Damping Effect of Virtual Synchronous Machines Provided by a Dynamical Virtual Impedance,” IEEE Trans. Energy Convers., vol. 36, no. 1, pp. 570–573, 2021, doi: 10.1109/TEC.2020.3040605. [9] M. Ebrahimi, S. A. Khajehoddin, and M. Karimi-Ghartemani, “An Improved Damping Method for Virtual Synchronous Machines,” IEEE Trans. Sustain. Energy, vol. 10, no. 3, pp. 1491–1500, 2019, doi: 10.1109/TSTE.2019.2902033. [10]U. Markovic, N. Früh, P. Aristidou, and G. Hug, “IntervalBased Adaptive Inertia and Damping Control of a Virtual Synchronous Machine,” in 2019 IEEE Milan PowerTech, 2019, pp. 1–6. doi: 10.1109/PTC.2019.8810640. [11]H. Wu et al., “Small-Signal Modeling and Parameters Design for Virtual Synchronous Generators,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4292–4303, 2016, doi: 10.1109/TIE.2016.2543181. [12]Q.-C. Zhong and G. Weiss, “Synchronverters: Inverters That Mimic Synchronous Generators,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1259–1267, 2011, doi: 10.1109/TIE.2010.2048839. [13]V. Natarajan and G. Weiss, “Synchronverters With Better Stability Due to Virtual Inductors, Virtual Capacitors, and AntiWindup,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5994–6004, 2017, doi: 10.1109/TIE.2017.2674611. [14]H. Bevrani, B. Francois, and T. Ise, Microgrid Dynamics and Control. 2017. doi: 10.1002/9781119263739. [15]Z. Zhao, Z. Sun, Y. Feng, B. Ji, S. Wang, and J. Zhao, “HighPerformance Resonant Controller Implemented in the DiscreteTime Domain for Voltage Regulation of Grid-Forming Converters,” IEEE Trans. Power Electron., vol. 37, no. 4, pp. 3913–3926, 2022, doi: 10.1109/TPEL.2021.3120426. [16]H. Bevrani, Robust Power System Frequency Control. 2009. doi: 10.1007/978-0-387-84878-5. [16]H. Bevrani, Robust Power System Frequency Control. 2009. doi: 10.1007/978-0-387-84878-5.
[17]J. Driesen and K. Visscher, “Virtual synchronous generators,” in 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 1–3. doi: 10.1109/PES.2008.4596800. [18]J. Liu, Y. Miura, H. Bevrani, and T. Ise, “A Unified Modeling Method of Virtual Synchronous Generator for Multi OperationMode Analyses,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 2, pp. 2394–2409, 2021, doi: 10.1109/JESTPE.2020.2970025. [19]H. Bevrani, J. Liu, and T. Kato, “Robust Optimal Damping Control Design For Grid-Forming Converters,” in 2021 9th International Renewable and Sustainable Energy Conference (IRSEC), 2021, pp. 1–6. doi: 10.1109/IRSEC53969.2021.9741217. [20]T. Shintai, Y. Miura, and T. Ise, “Oscillation Damping of a Distributed Generator Using a Virtual Synchronous Generator,” IEEE Trans. Power Deliv., vol. 29, no. 2, pp. 668–676, 2014, doi: 10.1109/TPWRD.2013.2281359. [21]L. Huang, H. Xin, and Z. Wang, “Damping Low-Frequency Oscillations Through VSC-HVdc Stations Operated as Virtual Synchronous Machines,” IEEE Trans. Power Electron., vol. 34, no. 6, pp. 5803–5818, 2019, doi: 10.1109/TPEL.2018.2866523. [22]S. Dong and Y. C. Chen, “Adjusting Synchronverter Dynamic Response Speed via Damping Correction Loop,” IEEE Trans. Energy Convers., vol. 32, no. 2, pp. 608–619, 2017, doi: 10.1109/TEC.2016.2645450. [23]J. Liu, Y. Miura, and T. Ise, “A Novel Oscillation Damping Method of Virtual Synchronous Generator Control Without PLL Using Pole Placement,” in 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), 2018, pp. 775–781. doi: 10.23919/IPEC.2018.8508003. [24]J. Liu, Y. Miura, and T. Ise, “Fixed-Parameter Damping Methods of Virtual Synchronous Generator Control Using State Feedback,” IEEE Access, vol. 7, pp. 99177–99190, 2019, doi: 10.1109/ACCESS.2019.2930132. [25]F. Blaabjerg, Control of Power Electronic Converters and Systems Vol 1. 2018. [26]J. Liu, Y. Miura, H. Bevrani, and T. Ise, “Enhanced Virtual Synchronous Generator Control for Parallel Inverters in Microgrids,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2268– 2277, 2017, doi: 10.1109/TSG.2016.2521405. [27]A. Karimi, Y. Jafarian, H. Bevrani, and R. Mirzaei, “Frequency Response Improvement in Microgrids: A Fuzzy– based Virtual Synchronous Generator Approach,” Int. J. Ind. Electron. Control Optim., vol. 3, no. 2, pp. 147–158, 2020, [Online]. Available: https://ieco.usb.ac.ir/article_5084.html%0Ahttps://ieco.usb.ac.ir/article_5084_ec47895f67ba5dd947f10ef414763fa1.pdf [28]M. Li et al., “Phase Feedforward Damping Control Method for Virtual Synchronous Generators,” IEEE Trans. Power Electron., vol. 37, no. 8, pp. 9790–9806, 2022, doi: 10.1109/TPEL.2022.3150950. [29]J. Alipoor, Y. Miura, and T. Ise, “Power System Stabilization Using Virtual Synchronous Generator With Alternating Moment of Inertia,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 2, pp. 451–458, 2015, doi: 10.1109/JESTPE.2014.2362530. [30]X. Hou, Y. Sun, X. Zhang, J. Lu, P. Wang, and J. M. Guerrero, “Improvement of Frequency Regulation in VSG-Based AC Microgrid Via Adaptive Virtual Inertia,” IEEE Trans. Power Electron., vol. 35, no. 2, pp. 1589–1602, 2020, doi: 10.1109/TPEL.2019.2923734. [31]M. Li, Y. Wang, N. Xu, W. Wang, and J. Li, “A consistent dynamic response control strategy for virtual synchronous generator,” in 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), 2017, pp. 1570–1574. doi: 10.1109/IFEEC.2017.7992280. [32]D. Li, Q. Zhu, S. Lin, and X. Y. Bian, “A Self-Adaptive Inertia and Damping Combination Control of VSG to Support Frequency Stability,” IEEE Trans. Energy Convers., vol. 32, no. 1, pp. 397– 398, 2017, doi: 10.1109/TEC.2016.2623982. [33]M. A. Torres L., L. A. C. Lopes, L. A. Morán T., and J. R. Espinoza C., “Self-Tuning Virtual Synchronous Machine: A Control Strategy for Energy Storage Systems to Support Dynamic Frequency Control,” IEEE Trans. Energy Convers., vol. 29, no. 4, pp. 833–840, 2014, doi: 10.1109/TEC.2014.2362577. [34]S. Qu and Z. Wang, “Cooperative Control Strategy of Virtual Synchronous Generator Based on Optimal Damping Ratio,” IEEE Access, vol. 9, pp. 709–719, 2021, doi: 10.1109/ACCESS.2020.3046626. [35]X. Liu et al., “Stability Assessment of A Radial Grid With Power Converters,” IEEE Open J. Power Electron., vol. 3, pp. 61– 74, 2022, doi: 10.1109/OJPEL.2021.3138509. [36]M. Li et al., “Unified Modeling and Analysis of Dynamic Power Coupling for Grid-Forming Converters,” IEEE Trans. Power Electron., vol. 37, no. 2, pp. 2321–2337, 2022, doi: 10.1109/TPEL.2021.3107329. [37]L. Harnefors, M. Schweizer, J. Kukkola, M. Routimo, M. Hinkkanen, and X. Wang, “Generic PLL-Based Grid-Forming Control,” IEEE Trans. Power Electron., vol. 37, no. 2, pp. 1201– 1204, 2022, doi: 10.1109/TPEL.2021.3106045. [38]Q. Taoufik, E. Rokrok, A. Bruyere, B. Francois, and X. Guillaud, “A PLL-Free Grid-Forming Control With Decoupled Functionalities for High-Power Transmission System Applications,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3034149. [39]F. Golnaraghi and B. C. Kuo, Automatic Control Systems, 10th Editi. New York: McGraw-Hill Education, 2017 [Online]. Available: https://www.accessengineeringlibrary.com/content/book/9781259643835 [40]K. Ogata, Modern control engineering. 2010. [41]O. Kramer, Genetic Algorithm Essentials. 2017. doi: 10.1007/978-3-319-52156-5. [42]S. S. Rao, Engineering Optimization: Theory and Practice. Wiley,2019 [Online].Available:https://books.google.nl/books?id=oG21DwAAQBAJ | ||
آمار تعداد مشاهده مقاله: 119 تعداد دریافت فایل اصل مقاله: 233 |