تعداد نشریات | 32 |
تعداد شمارهها | 737 |
تعداد مقالات | 7,135 |
تعداد مشاهده مقاله | 11,602,888 |
تعداد دریافت فایل اصل مقاله | 7,953,193 |
Virtual Inertia Control and Small-Signal Stability Analysis of Electric Vehicle | ||
International Journal of Industrial Electronics Control and Optimization | ||
مقاله 2، دوره 6، شماره 4، اسفند 2023، صفحه 261-270 اصل مقاله (2.21 M) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22111/ieco.2023.46232.1496 | ||
نویسنده | ||
Mehran Jami* | ||
Assistant professor, Marivan Branch, Islamic Azad University | ||
چکیده | ||
In electric vehicles (EVs), the small size of the dc link capacitor results in significant voltage deviations when there are changes in load or uncertain fluctuations from the power resources. This causes a decline in voltage quality. To address the issue of low inertia, this study suggests the use of a fast-responding energy storage system, such as a supercapacitor (SC), which can replicate inertial responses through a specified control algorithm. A virtual capacitor and a virtual conductance are presented in this paper, which are implemented in the inner loop control, specifically the current loop control of SC, to effectively emulate inertia and damping and improves the battery lifetime by reducing the rate of charge and discharge. To assess the stability of the EV, a comprehensive small-signal model is developed, and the acceptable range of inertia response parameters is determined through eigenvalues analysis of the system. Numerical simulations are conducted to demonstrate the performance of the proposed control structure. | ||
کلیدواژهها | ||
electric vehicle؛ energy storage system؛ small-signal model؛ stability؛ virtual inertia | ||
مراجع | ||
[1] T. Mesbahi, P. Bartholomeus, N. Rizoug, R. Sadoun, F. Khenfri and P. Le Moigne, “Advanced model of hybrid energy storage system integrating lithium-ion battery and supercapacitor for electric vehicle applications,” IEEE Trans. Ind. Electron., vol. 68, no. 5, pp. 3962-3972, May 2021.
[2] A. K. Podder, O. Chakraborty, S. Islam, N. Manoj Kumar and H. H. Alhelou, “Control strategies of different hybrid energy storage systems for electric vehicles applications,” IEEE Access, vol. 9, pp. 51865-51895, 2021. [3] M. Carignano, V. Roda, R. Costa-Castelló, L. Valiño, A. Lozano, and F. Barreras, “Assessment of energy management in a fuel cell/battery hybrid vehicle,” IEEE Access, vol. 7, pp. 16110-16122, 2019. [4] A. Tahri, H. El Fadil, F. Z. Belhaj, K. Gaouzi, A. Rachid, F. Giri, and F. Z. Chaoui, “Management of fuel cell power and supercapacitor state-ofcharge for electric vehicles,” Electr. Power Syst. Res., vol. 160, pp. 89-98, Jul. 2018. [5] S. Ahmadi, S. Bathaee, AH. Hosseinpour, “Improving fuel economy and performance of a fuel-cell hybrid electric vehicle (fuel-cell, battery, and ultracapacitor) using optimized energy management strategy,” Energy Conversion and Management, vol. 160, pp. 74-84, 2018. [6] J. P. Torreglosa, P. García, L. M. Fernández, and F. Jurado, “Predictive control for the energy management of a fuel cellbattery-supercapacitor tramway,” IEEE Trans Ind. Informat., vol. 10, no. 1, pp. 276-285, Feb. 2014. [7] S. Ahmadi and S. M. T. Bathaee, “multi-objective genetic optimization of the fuel cell hybrid vehicle supervisory system: Fuzzy logic and operating mode control strategies,” Int. J. Hydrogen Energy, vol. 40, no. 36, pp. 12512-12521, Sep. 2015. [8] J. Chen, C. Xu, C. Wu, and W. Xu, “Adaptive fuzzy logic control of fuel-cell battery hybrid systems for electric vehicles,” IEEE Trans. Ind. Informat., vol. 14, no. 1, pp. 292-300, Jan. 2018. [9] L. Samaranayake and S. Longo, “Degradation control for electric vehicle machines using nonlinear model predictive control,” IEEE Trans. Control Syst. Technol., vol. 26, no. 1, pp. 89-101, Jan. 2018. [10] M. H. K. Tushar, C. Assi, M. Maier, M. F. Uddin, “Smart Microgrids: optimal joint scheduling for electric vehicles and home appliances”, IEEE Trans. on Smart Grid, vol. 5, no. 1, pp. 239 – 250, Jan. 2014. [11] K. W. Hu, C. M. Liaw, “Incorporated Operation Control of DC Microgrid and Electric Vehicle”, IEEE Trans. on Ind. Electron., vol. 63, no. 1, pp. 202 – 215, Jan. 2016. [12] J. Fang, H. Li, Y. Tang, and F. Blaabjerg, “On the inertia of future more-electronics power systems,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 7, no. 4, pp. 2130–2146, Dec. 2019.
[13] M. Su, Z. Liu, Y. Sun, H. Han, X. Hou, “Stability analysis and stabilization methods of DC microgrid with multiple parallel-connected DC–DC converters loaded by CPLs,” IEEE Trans. Smart Grid, vol. 9, no. 1, pp.132-142, Mar. 2016. [14] W. Yu, Z. Liu, and I. A. Tasiu, “Virtual inertia control strategy of traction converter in high-speed railways based on feedback linearization of sliding mode observer,” IEEE Trans. Veh. Technol., vol. 70, no. 11, pp. 11390–11403, Nov. 2021. [15] G. Lin, J. Liu, C. Rehtanz, C. Li, Y. Li, and P. Wang, “Inertia droop control and stability mechanism analysis of energy storage systems for dc-busbar electric vehicle charging station,” IEEE Trans. on Transp. Electrific., vol. 9, no. 1, pp. 266-282, Mar 2023. [16] H. Ali, “A hybrid energy storage system based on supercapacitor and electric vehicle batteries for frequency stability improvement of islanded microgrids,” in 2022 23rd International Middle East Power Systems Conference (MEPCON), 2022, pp. 1-6. [17] H. Jafari, M. Moghaddami, T. O. Olowu, A. Sarwat and M. Mahmoudi, “Virtual inertia-based multi-power level controller for inductive electric vehicle charging systems,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 6, pp. 7369-7382, Dec. 2021. [18] L. Huang, H. Xin, H. Yuan, G. Wang, and P. Ju, “Damping effect of virtual synchronous machines provided by a dynamical virtual impedance,” IEEE Trans. Energy Convers., vol. 36, no. 1, pp. 570–573, Mar. 2021. [19] A. Karimipouya, S. Karimi, H. Abdi, “Microgrid frequency control using the virtual inertia and ANFIS-based controller,” International Journal of Industrial Electronics, Control and Optimization, vol. 2, no. 2, pp. 145-154, Apr. 2019. [20] A. Karimi, Y. Jafarian, H. Bevrani, R. Mirzaei, “Frequency response improvement in microgrids: a fuzzy–based virtual synchronous generator approach,” International Journal of Industrial Electronics, Control and Optimization, vol. 3, no. 2, pp.147-158, Apr. 2020. [21] Y. Zhang, Q. Sun, J. Zhou, L. Li, P. Wang, and J. M. Guerrero, “Coordinated control of networked AC/DC microgrids with adaptive virtual inertia and governor-gain for stability enhancement,” IEEE Trans. Energy Convers., vol. 36, no. 1, pp. 95–110, Mar. 2021. [22] Y. Yang, C. Li, J. Xu, F. Blaabjerg, and T. Dragiˇcevi´c, “Virtual inertia control strategy for improving damping performance of DC microgrid with negative feedback effect,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 2, pp. 1241–1257, Apr. 2021. [23] Q. Ye, R. Mo, and H. Li, “Impedance modeling and DC bus voltage stability assessment of a solid-state transformerenabled hybrid AC–DC grid considering bidirectional power flow,” IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6531– 6540, Aug. 2020. [24] W. Du, Q. Fu and H. F. Wang, “Small-signal stability of a DC network planned for electric vehicle charging,” IEEE Trans. Smart Grid, vol. 11, no. 5, pp. 3748-3762, Sep. 2020. [25] R. Shi, S. Semsar and P. W. Lehn, "Single-stage hybrid energy storage integration in electric vehicles using vector controlled power sharing", IEEE Trans. Ind. Electron., vol. 68, no. 11, pp. 10623-10633, 2021. [26] J.-L. Kuo, K.-L. Chao, and L.-S. Lee, “Dual mechatronic MPPT controllers with PN and OPSO control algorithms for the rotatable solar panel in PHEV system,” IEEE Transactions on Industrial Electronics, vol. 57, no. 2, pp. 678–689, 2009. [27] E. Unamuno, J. A. Barrena, “Design and small-signal stability analysis of a virtual-capacitor control for dc microgrids,” Proc. 19th Eur. Conf. Power Electron. Appl. (EPE ECCE Eur.), pp.1-10, 2017. | ||
آمار تعداد مشاهده مقاله: 249 تعداد دریافت فایل اصل مقاله: 334 |