| تعداد نشریات | 33 |
| تعداد شمارهها | 799 |
| تعداد مقالات | 7,730 |
| تعداد مشاهده مقاله | 13,775,407 |
| تعداد دریافت فایل اصل مقاله | 9,006,482 |
Investigation of the Structure and CO2/N2 Separation Performance of PEBA Membrane by Molecular Simulation Study | ||
| Chemical Process Design | ||
| دوره 2، شماره 2، اسفند 2023، صفحه 37-41 اصل مقاله (963.69 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22111/cpd.2023.47331.1029 | ||
| نویسندگان | ||
| Mahdi Elyasi Kojabad* 1؛ Haniyeh Golizadeh kahnamouei1؛ Ali Akbar Babaluo2 | ||
| 1Faculty of Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran | ||
| 2Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran | ||
| چکیده | ||
| In this work, the structure of a poly ether block amide (PEBA) polymeric membrane was investigated using molecular simulation study. This membrane performance for the separation of CO2 from N2 was evaluated. In this regard, the density and fractional free volume (FFV) for this membrane were calculated and compared with experimental data. The results showed the conformity of the molecular simulation results with experimental work results. In addition, the mobility of PEBA chains and its polyether and polyamide parts were measured on a molecular scale which cannot be measured on a laboratory scale. Then the diffusion and solubility coefficients of gases were determined for this membrane and the permeability of CO2 and CO2/N2 selectivity were calculated. The performance properties of the simulated membrane showed that, solubility has a greater role in CO2/N2 selectivity than diffusivity in this membrane, so that CO2 permeability and CO2/N2 selectivity were 116.9 and 130 Barrer, respectively. | ||
| کلیدواژهها | ||
| Polymeric membrane؛ Poly ether block amide؛ Molecular simulation؛ Separation of CO2 from N2 | ||
| مراجع | ||
|
[1] Elyasi Kojabad, M., Momeni, M., Babaluo, A.A., Vaezi, M.J., 2020. PEBA/PSf multilayer composite membranes for CO2 separation: Influence of dip coating parameters, Chemical Engineering & Technology, 43 (7), 1451–1460. https://doi.org/10.1002/ceat.201900262
[2] Patil, T., Dharaskar, S., Sinha, M., Jampa, S.S., 2022a. Effectiveness of ionic liquid-supported membranes for carbon dioxide capture: a review. Environmental Science Pollution Research, 29, 35723 –35745. https://doi.org/10.1007/s11356-022-19586-0
[3] Amirkhani, F., Riasat, H., Asghari, M., 2020b. CO2/CH4 mixed gas separation using poly (ether-b-amide)-ZnO nanocomposite membranes : Experimental and molecular dynamics study, Polymer Testing, 86, 106464. https://doi.org/10.1016/j.polymertesting.2020.106464
[3] Chen, S., Zhou, T., Wu, H., Wu, Y., Jiang, Z., 2017. Embedding Molecular Amine Functionalized Polydopamine Submicroparticles into Polymeric Membrane for Carbon Capture. Industrial Engineering Chemistry Research, 56, 8103−8110. https://doi.org/10.1021/acs.iecr.7b01546
[4] Ebadi Amooghin, A., Mashhadikhan, S., Sanaeepur, H., Moghadassi, A., Matsuura, T., Ramakrishna, S., 2019. Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient CO2 separation. Progress Material Science, 102, 222–295. https://doi.org/10.1016/j.pmatsci.2018.11.002
[5] Momeni, M., Elyasi Kojabad, M., Khanmohammadi, S., Farhadi, Z., Ghalandarzadeh, R., Babaluo, A.A., Zare, M., 2019. Impact of support on the fabrication of poly (ether-b-amide) composite membrane and economic evaluation for natural gas sweetening, Journal of Natural Gas Science and Engineering, 62, 236–246. https://doi.org/10.1016/j.jngse.2018.12.014
[6] Karamouz, F., Maghsoudi, H., Yegani, R., 2016. Synthesis and characterization of high permeable PEBA membranes for CO2/CH4 separation, Journal of Natural Gas Science and Engineering, 35, 980–985. https://doi.org/10.1016/j.jngse.2016.09.036
[7] Elyasi Kojabad, M., Babaluo, A.A., Tavakoli, A., 2021. A novel semi-mobile carrier facilitated transport membrane containing aniline/poly (ether-block-amide) for CO2/N2 separation: Molecular simulation and experimental study, Separation and Purification Technology, 266, 118494. https://doi.org/10.1016/j.seppur.2021.118494
[8] Elyasi Kojabad, M., Nouri, M., Babaluo, A.A., Tavakoli, A., Sardari, R., Farhadi, A., Moharrami, M., 2023. Alumina-PEBA/ PSf Multilayer composite membranes for CO2 separation: experimental and molecular simulation studie, Separation and Purification Technology, 30 (6), 2043-2055. https://doi.org/10.24200/sci.2022.57717.5383
[10] Ren, X., Ren, J., Li, H., Feng, S., Deng, M., 2012. Poly (amide-6-b-ethylene oxide) multilayer composite membrane for carbon dioxide separation, International Journal of Greenhouse Gas Control, 8, 111–120. https://doi.org/10.1016/j.ijggc.2012.01.017
[11] Wang, L., Li, Y., Li, S., Ji, P., Jiang, C., 2014. Preparation of composite poly (ether block amide) membrane for CO2 capture, J. Energy Chem. 23, 717–725. https://doi.org/10.1016/S2095-4956 (14) 60204-7
[12] Golzar, K., Amjad-iranagh, S., Amani, M., Modarress, H., 2014. Molecular simulation study of penetrant gas transport properties into the pure and nanosized silica particles filled polysulfone membranes, Journal of Membrane Science, 451, 117–134. https://doi.org/10.1016/j.memsci.2013.09.056
[13] Golzar, K., Modarress, H., Amjad-iranagh, S., 2017. Separation of gases by using pristine, composite and nanocomposite polymeric membranes: A molecular dynamics simulation study, Journal of Membrane Science, 539, 238–256. https://doi.org/10.1016/j.memsci.2017.06.010
[14] Salim, W., Winston Ho, W.S., 2018. Hydrogen purification with CO2-selective facilitated transport membranes, Current Opinion in Chemical Engineering, 21, 96–102. https://doi.org/10.1016/j.coche.2018.09.004
[15] Elyasi Kojabad, M., Babaluo, A.A., Tavakoli, A., Kahnamouei, H.G., 2021.A novel high-performance facilitated transport membrane by simultaneously using semi-mobile and fixed carriers for CO2/N2 separation, Process Safety and Environmental Protection, 156 , 304–314. https://doi.org/10.1016/j.psep.2021.10.017
[16] Elyasi Kojabad, M., Babaluo, A.A., Tavakoli, A., Sofla, R.L.M., Kahnamouei, H.G., 2021. Comparison of acidic and basic ionic liquids effects on dispersion of alumina particles in Pebax composite membranes for CO2/N2 separation: Experimental study and molecular simulation, Journal of Environmental Chemical Engineering, 9, 106116. https://doi.org/10.1016/j.jece.2021.106116
[17] Ling, C., Liang, X., Fan, F., Yang, Z., 2012. Diffusion behavior of the model diesel components in different polymer membranes by molecular dynamic simulation, Chemical Engineering Science, 84, 292–302. https://doi.org/10.1016/j.ces.2012.08.035
[18] Jeyranpour, F., Alahyarizadeh, G., Minuchehr, A., 2016. The thermo-mechanical properties estimation of fullerene-reinforced resin epoxy composites by molecular dynamics simulation–A comparative study, Polymer, 88, 9–18. https://doi.org/10.1016/j.polymer.2016.02.018
[19] Li, Y., Li, X., Wu, H., Xin, Q., Wang, S., Liu, Y., Tian, Z., Zhou, T., Jiang, Z., Tian, H., Cao, X., Wang, B., 2015. Anionic surfactant-doped Pebax membrane with optimal free volume characteristics for efficient CO2 separation, Journal of Membrane Science, 493, 460–469. https://doi.org/10.1016/j.memsci.2015.06.046 | ||
|
آمار تعداد مشاهده مقاله: 276 تعداد دریافت فایل اصل مقاله: 211 |
||