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OPTIMAL CONTROL OF FUZZY LINEAR CONTROLLED

SYSTEM WITH FUZZY INITIAL CONDITIONS

M. NAJARIYAN AND M. H. FARAHI

Abstract. In this article we found the solution of fuzzy linear controlled sys-

tem with fuzzy initial conditions by using α-cuts and presentation of numbers
in a more compact form by moving to the field of complex numbers. Next, a

fuzzy optimal control problem for a fuzzy system is considered to optimize the

expected value of a fuzzy objective function. Based on Pontryagin Maximum
Principle, a constructive equation for the problem is presented. In the last

section, three examples are used to show that the method in effective to solve

fuzzy and fuzzy optimal linear controlled systems.

1. Introduction

Optimal control theory is developed to find optimal ways to control dynamic
systems. Uncertainty is inherent in most real-world systems. Fuzziness is a kind
of uncertainty in real word problems. So, some dynamic control systems may be
described by fuzzy differential equations and fuzzy control. The decision makers
must select an optimal decision among all possible ones to reach the result. Such
optimal control problems, called fuzzy optimal control problems.
Many authors have studied several concepts of fuzzy systems. Zhu [21] applied
Bellman’s optimal principle to obtain the principle of optimality for fuzzy optimal
control problems. Diamond and Kloeden [4] showed the existence of the fuzzy op-

timal control for the system ˙̃x(t) = a(t) � x̃(t) ⊕ ũ(t), x̃(0) = x̃0 , where the set
of admissible pairs such as p = [x̃(.), ũ(.)] are nonempty compact interval-valued
functions on E1. Park et.al [12] found the sufficient conditions of nonlocal control-
lability for the semilinear fuzzy integrodifferential equations.
In [6] Filev and Angelove, formulated the problem of fuzzy optimal control of non-
linear system and solved this problem on the basis of fuzzy mathematical pro-
gramming. They considered a particular case of fuzzy optimal control with fuzzy
objective function and crisp transversality conditions.
Z. Qin [15] considered the time-homogeneous fuzzy optimal control problems, with
discounted objective function. Zhu [20] introduced a method to solve fuzzy optimal
control problem by using dynamic programming.
In [2], the initial value problem related to the fuzzy differential equation ỹ′(t) =

a(t)� ỹ(t)⊕ b̃(t) was studied, obtaining the expression of (1)-differentiable solutions
for the case a > 0 and (2)-differentiable solutions for a < 0. In [8], authors complete
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this study, showing new solutions for the problem which are not included in [2].
Namely, in Theorems 3.2 and 3.4, they give the expression of (1)-differentiable solu-
tions for a < 0 and (2)-differentiable solutions for a > 0. In that paper,the authors
consider first order linear fuzzy differential equations under the generalized differ-
entiability concept and present the solutions of this problem in the general case.
Nieto et.al in [10], obtain explicitly the solution for a linear fuzzy differential equa-
tion subject to impulsive behavior and periodic boundary value conditions by prov-
ing that the same Greens function obtained for the study of the corresponding
ordinary differential equation is valid.
In [9] by using the generalized differentiability authors, found new solutions for some
fuzzy two-point boundary value problems for which considering only the Hukuhara
differentiability, a solution did not exist. Indeed, , they could find solutions for a
larger class of fuzzy boundary value problems by generalized differentiability rather
than using the Hukuhara differentiability.
in [7] Georgiou et.al considered nth-order fuzzy differential equations with initial
value conditions. They proved the existence and uniqueness of solution for nonlin-
earities satisfying a Lipschitz condition. They applied the obtained results to the
particular case of linear fuzzy problems.
In [11], Nieto et.al using strongly generalized differentiability, they generalized some
numerical methods presented for solving FDEs. The original initial value problem
is replaced by two parametric ordinary differential systems which are then solved
numerically using classical algorithms.
Applications of optimal control problems involve the control of dynamic systems,
that evolve over time either continuous-time systems or discrete time systems. The
notion of continuous dynamical system is a basic concept in system theory: it is
the formalization of a natural phenomenon in a set of variables defined as the state
and a set of deterministic differential equations, defined as the model and a set of
variables defined as the control.
In [19] authors presented a new solution for fuzzy differential equation with fuzzy
initial conditions by using α-cut. In [5] a modified k -step method with one non-step
point was presented to solve the fuzzy initial value problem . In [1] Allahviranloo
and Kermani considered different method to solve fuzzy partial differential equa-
tions such as fuzzy hyperbolic and fuzzy parabolic equations. In [16] a model of an
optimal control problem with chance constraints is introduced.
In this paper we extend this technique to solve fuzzy control system governed by
fuzzy differential equation, and at the end, by using Pontryagin Maximum Principle
(PMP) (see Theorem 4.1 of [14]), the optimal fuzzy controlled system is solved.

2. Fundamental Theorem for the Linear Systems

In this section we will consider a fuzzy linear control problem with fuzzy initial
conditions. We begin the section by considering the following fuzzy linear dynamical
system: { ˙̃x(t) = A� x̃(t)

x̃(t0) = x̃0 (1)
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where x̃ is a fuzzy function, x̃0 is a fuzzy initial condition, A = [aij ]n×m, aij ∈ <
and ˙̃x(t) = dx̃

dt = [dx̃1

dt , . . . ,
dx̃n

dt ]T . To consider (2), one needs the following definition
and lemmas.

Definition 2.1. Denote E1 = {u| u satisfies (i)− (iv)} where:

(i) u is normal, i.e. there exists x ∈ < , such that u(x) = 1.
(ii) u is fuzzy convex, i.e.

∀x, y ∈ < and λ ∈ [0, 1] , u(λx+ (1− λ)y) ≥ min{u(x), u(y)} .
(iii) u is upper semicontinuous.
(iv) cl{s ∈ <|u(s) > 0}, is compact in <.

The α-level set of a fuzzy number u ∈ E1, 0 ≤ α ≤ 1, denoted by uα, is defined
as:

uα =

{
{s ∈ <|u(s) ≥ α} 0 < α ≤ 1
cl{s ∈ <|u(s) > 0} α = 0

If u ∈ E1, then u is fuzzy convex, so uα is closed and bounded in <, i.e. uα =
[uα, uα], where uα = inf{x ∈ < : u(x) ≥ α} > −∞ and ūα = sup{x ∈ < : u(x) ≥
α} <∞. For more detail see [4].

Lemma 2.2. Denote I = [0, 1]. Assumed that a : I → < and b : I → < satisfy the
following conditions:

(i) a : I → < is a bounded non-decreasing function,
(ii) b : I → < is a bounded non-increasing function,
(iii) a(1) ≤ b(1),
(iv) for 0 < k ≤ 1, limα→k− a(α) = a(k) and limα→k− b(α) = b(k),
(v) limα→0+ a(α) = a(0) and limα→0+ b(α) = b(0),

then η : < → I defined by η(x) = sup{α|a(α) ≤ x ≤ b(α)} is a fuzzy number with
parametrization given by {(a(α), b(α), α)|0 ≤ α ≤ 1}. Moreover, if η : < → I is
a fuzzy number with parametrization given by {(a(α), b(α), α)|0 ≤ α ≤ 1} then
functions a(α) and b(α) satisfy the conditions (i)− (v) in Lemma 2.2.

Proof. See [4]. �

Now, we back to the fuzzy dynamical system (1). Lemma 2.3 points out the way
of finding the solution of (1).

Lemma 2.3. Assume each entry of the vector x in (1) be a fuzzy number at the
time instant t where

xkα(t) = [xkα(t), x̄kα(t)], k = 1, 2, . . . , n, (2)

then, the evaluation of the system (1) can be described by 2n differential equations
for the endpoints of the intervals (2). The equations for the endpoints of the
intervals are as follows:

ẋkα(t) = min{(Au)k : uj ∈ [xjα(t), x̄jα(t)]},
¯̇xkα(t) = max{(Au)k : uj ∈ [xjα(t), x̄jα(t)]}
xα(t0) = xα0
x̄α(t0) = x̄α0

(3)
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where (Au)k :=
∑n
j=1 akju

j is the kth row of Au.

Proof. See [18], [13], [17]. �

Since the vector field in (1) is linear, the following rule applies in (3):

ẋkα(t) =

n∑
j=1

akju
j

where

uj =

{
xjα(t)

x̄jα(t)

akj ≥ 0

akj < 0

and

˙̄xkα(t) =
n∑
j=1

akjv
j ,

where

vj =

{
x̄jα(t)

xjα(t)

akj ≥ 0

akj < 0.

Now we give a characterization for an important class of fuzzy controlled sys-
tem. Consider the following fuzzy linear controlled system with fuzzy boundary
conditions: { ˙̃x(t) = A� x̃(t)⊕ C � ũ(t)

x̃(t0) = x̃0, x̃(tf ) = x̃f , (4)

the task is to carry the controlled system from the initial point x̃(t0) = x̃0 to final
target x̃(tf ) = x̃f , by using suitable fuzzy control function ũ. As indicated in [13],
it is possible to represent a fuzzy number in a more compact form by moving to
the field of complex numbers. Define new complex variables as follows:

xkα = xkα(t) + ix̄kα(t), k = 1, . . . , n. (5)

Then, the following theorem gives the solution:

Theorem 2.4. Let A and C be n× n and n×m matrices respectively. Then for
a given x̃0, the fuzzy controlled system

˙̃x(t) = A� x̃(t)⊕ C � ũ(t)
x̃(t0) = x̃0
x̃(tf ) = x̃f ,

(6)

has the solution as:
ẋα(t) + i ˙̄xα(t) = B(xα(t) + ix̄α(t)) +D(uα(t) + iūα(t))
xα(t0) + ix̄α(t0) = xα0 + ix̄α0
xα(tf ) + ix̄α(tf ) = xαf + ix̄αf (7)
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where the elements of matrices B and D are determined from those of A and C as
follows:

bij =

{
eaij aij ≥ 0
gaij aij < 0

dij =

{
ecij , cij ≥ 0
gcij cij < 0 (8)

where for every a+ bi ∈ C (complex numbers field),

e : a+ bi→ a+ bi

g : a+ bi→ b+ ai (9)

Proof. By using (5) and the two operators in (9), the system (6) can be written as
(7). The solution of (7) is given by:

xα(t) + ix̄α(t) = exp((t− t0)B)(xα0 + ix̄α0)

+

∫ t

t0

exp((t− s)B)D(uα(s) + iūα(s))ds, (10)

since by derivation from(10) one have:

ẋα(t) + i ˙̄xα(t) =
d

dt
(e(t−t0)B(xα0 + ix̄α0)) +

d

dt
(

∫ t

t0

e(t−s)BD(uα(s) + iūα(s))ds)

= lim
h→0

e(t+h−t0)B − e(t−t0)B

h
(xα0 + ix̄α0)

+ lim
h→0

∫ t+h
t0

e(t+h−s)BD(uα(s) + iūα(s))ds−
∫ t
t0
e(t−s)BD(uα(s) + iūα(s))ds

h

= e(t−t0)B lim
h→0

ehB − I
h

(xα0 + ix̄α0)

+ lim
h→0

∫ t
t0
e(t+h−s)BD(uα(s) + iūα(s))ds−

∫ t
t0
e(t−s)BD(uα(s) + iūα(s))ds

h

+ lim
h→0

∫ t+h
t

e(t+h−s)BD(uα(s) + iūα(s))ds

h
= e(t−t0)B lim

h→0

ehB − I
h

(xα0 + ix̄α0)

+ lim
h→0

∫ t
t0
e(t−s)B(ehB − I)D(uα(s) + iūα(s))ds

h

+ lim
h→0

∫ t+h
t

e(t+h−s)BD(uα(s) + iūα(s))ds

h

= e(t−t0)B lim
h→0

lim
k→+∞

(B +
B2h

2!
+ ...+

Bkhk−1

k!
)(xα0 + ix̄α0)

+

∫ t

t0

e(t−s)B lim
h→0

lim
k→+∞

(B +
B2h

2!
+ ...+

Bkhk−1

k!
)D(uα(s) + iūα(s))ds

+ lim
h→0

e(t+h−t)BD(uα(t) + iūα(t))h

h
= e(t−t0)BB(xα0 + ix̄α0)

+

∫ t

t0

e(t−s)BBD(uα(s) + iūα(s))ds+D(uα(t) + iūα(t)).
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Since B commutes exp((t− t0)B), the required result follows:

ẋα(t) + i ˙̄xα(t) = B(xα(t) + ix̄α(t)) +D(uα(t) + iūα(t))

�

3. Optimal Control of Time Invariant System with Fuzzy Conditions

In this section consider the fuzzy optimal controlled system:

Min

∫ tf

t0

ũ2(t)dt

s.t.

˙̃x(t) = A� x̃(t)⊕ C � ũ(t)

x̃(t0) = x̃0, x̃(tf ) = x̃f (11)

Similar to the fuzzy controlled system (4), the optimal controlled system(11) changes
to:

Min

∫ tf

t0

(u2α(t) + iū2α(t))dt

s.t.

ẋα(t) + i ˙̄xα(t) = B(xα(t) + ix̄α(t)) +D(uα(t) + iūα(t))

xα(t0) + ix̄α(t0) = xα0 + ix̄α0

xα(tf ) + ix̄α(tf ) = xαf + ix̄αf (12)

where the elements of matrices B and D are determined by those of A and C as
follows:

bij =

{
eaij ,

gaij

aij ≥ 0

aij < 0

and

dij =

{
ecij ,

gcij

cij ≥ 0

cij < 0

where

e : a+ bi→ a+ bi

g : a+ bi→ b+ ai.

If (x∗α, x̄
∗
α, u
∗
α, ū
∗
α) be the optimal solution for (12) then the following theorem is

hold:

Theorem 3.1. Define the Hamiltonian function

H(x, x̄, u, ū, ψ, t) = −(u2α(t) + iū2α(t)) +ψT (B(xα(t) + ix̄α(t)) +D(uα(t) + iūα(t)))

, then the necessary conditions for the quadruple (x∗α, x̄
∗
α, u
∗
α, ū
∗
α), the optimal solu-

tion of (12) is the existence of a costate vector function ψ that satisfies the following
differential equations:

ψ̇ = − ∂H
∂xα
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where xα = (xα, x̄α), and the Hamiltonian function in u∗α and ū∗α is maximized ,i.e.

∂H

∂u∗α
= 0, and

∂H

∂ū∗α
= 0.

Proof. Suppose f0(uα, ūα) = u2α(t)+iū2α(t) and fj(xα, x̄α, uα, ūα) be the jth row of

B(xα(t) + ix̄α(t)) +D(uα(t) + iūα(t)) for j = 1, 2, ..., n, and J =
∫ tf
t0
f0(uα, ūα)dt.

There is no lose of generality in taking n = 2 and m = 1. Let u∗α(t) and ū∗α(t)
be the optimal controls and x∗1α(t), x̄∗1α(t), x∗2α(t) and x̄∗2α(t) be the corresponding
optimal paths. Consider a small variation of u∗α(t), as uα(t) = u∗α(t)+δuα(t) and for
ū∗α(t), as ūα(t) = ū∗α(t)+δūα(t) with corresponding path (x∗1α(t)+δx1α(t), x̄∗1α(t)+
δx̄1α(t), x∗2α(t) + δx2α(t), x̄∗2α(t) + δx̄2α(t)). This will not arrive at x1αf , x̄1αf , x2αf
and x̄2αf at tf but at a slightly different time tf + δt. The latter conditions give

xjα(tf + δt) + ix̄jα(tf + δt) = xjαf + ix̄jαf j = 1, 2.

As usual in variational arguments we are in the first instance interested only in
first-order effects, and from the latter conditions we deduce that

(δxjα(tf ) + iδx̄jα(tf )) + (ẋjα(tf )δt+ i ˙̄xjα(tf )δt) = 0 j = 1, 2.

If we now use the sate equations we obtain

δxjα(tf ) + iδx̄jα(tf ) = −fj(tf )δt,

where fj(tf ) = fj(x1α(tf ), x̄1α(tf ), x2α(tf ), x̄2α(tf ), uα(tf ), ūα(tf )). The conse-
quent change ∆J in J is

∆J =

∫ tf+δt

t0

f0(u∗α + δuα, ū
∗
α + δūα)dt−

∫ tf

t0

f0(u∗α, ū
∗
α)dt

=

∫ tf

t0

{
∂f0

∂uα
δuα +

∂f0

∂ūα
δūα}dt+ f0(tf )δt+O((δu∗α)2) +O((δū∗α)2),

where f0(tf ) is the value of f0 at t = tf and the derivatives in the integrand are
evaluated by the optimal trajectory. Let δJ denote the first variation. If u∗α and
ū∗α are optimal, it is necessary that the first variation δJ be zero, so∫ tf

t0

{
∂f0

∂uα
δuα +

∂f0

∂ūα
δūα}dt+ f0(tf )δt = 0

, on the optimal paths for all variations.
We simply need to introduce two Lagrange multipliers ψ1(t) and ψ2(t). Now con-
sider the pair of integrals

ϕj =

∫ tf

t0

ψj(t)(ẋjα + i ˙̄xjα − fj(x1α, x̄1α, x2α, x̄2α, uα, ūα))dt j = 1, 2.

With respect to [14] one can see that δϕj = 0, since ϕj = 0, for all uα, ūα. The
calculation is straightforward, giving

δϕj =

∫ tf

t0

ψj(t){−
∂fj

∂x1α
δx1α −

∂fj

∂x̄1α
δx̄1α −

∂fj

∂x2α
δx2α −

∂fj

∂x̄2α
δx̄2α

−
∂fj

∂uα
δuα −

∂fj

∂ūα
δūα +

d

dt
(δxjα + iδx̄jα)}dt.
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Now ∫ tf

t0

ψj(t)
d

dt
(δxjα + iδx̄jα)}dt = −fj(tf )ψj(tf )δt−

∫ tf

t0

ψ̇j(δxjα + iδx̄jα)}dt.

The condition that δJ = 0 can be replaced by the condition that δJ +δϕ1+δϕ2 =
0. And if we introduce the Hamiltonian function:

H = −f0(uα, ūα) + ψ1f1(x1α, x̄1α, x2α, x̄2α, uα, ūα) + ψ2f2(x1α, x̄1α, x2α, x̄2α, uα, ūα),

then one can obtain the condition of the Theorem easily. �

By using Theorem 3.1 and (7) one can solve the fuzzy optimal controlled system
(11). In the next section, we apply this technique to solve two numerical examples
in detail.

4. Numerical Examples

Example 4.1. Consider the following fuzzy linear controlled systems:
˙̃x1(t) = −2� x̃2(t)− ũ(t)
˙̃x2(t) = 2� x̃1(t)

x̃1(0) = x̃2(0) = (1, 2, 3)
x̃1(1) = x̃2(1) = (−0.5, 0, 0.5).

By using (7) and definitions B and D, one can find the following controlled system:
ẋ1α
˙̄x1α
ẋ2α
˙̄x2α

 =


0 0 0 −2
0 0 −2 0

2 0 0 0

0 2 0 0



x1α
x̄1α
x2α
x̄2α

+


0 −1
−1 0

0 0

0 0

[ uα
ūα

]

The solution of the above controlled system is:
x1α
x̄1α
x2α
x̄2α

 =


cos2t

2
+ e2t+e−2t

4
cos2t

2
− e2t+e−2t

4
−sin2t

2
+ e2t−e−2t

4
cos2t

2
− e2t+e−2t

4
cos2t

2
+ e2t+e−2t

4
−sin2t

2
− e2t−e−2t

4
sin2t

2
+ e2t−e−2t

4
sin2t

2
− e2t−e−2t

4
cos2t

2
+ e2t+e−2t

4
sin2t

2
− e2t−e−2t

4
sin2t

2
+ e2t−e−2t

4
cos2t

2
− e2t+e−2t

4

−sin2t
2
− e2t−e−2t

4
−sin2t

2
+ e2t−e−2t

4
cos2t

2
− e2t+e−2t

4
cos2t

2
+ e2t+e−2t

4




2α+ (1− α)
2α+ 3(1− α)

2α+ (1− α)
2α+ 3(1− α)

+

∫ t

0


cos2(t−s)

2
+ e2(t−s)+e−2(t−s)

4
cos2(t−s)

2
− e2(t−s)+e−2(t−s)

4
cos2(t−s)

2
− e2(t−s)+e−2(t−s)

4
cos2(t−s)

2
+ e2(t−s)+e−2(t−s)

4
sin2(t−s)

2
+ e2(t−s)−e−2(t−s)

4
sin2(t−s)

2
− e2(t−s)−e−2(t−s)

4
sin2(t−s)

2
− e2(t−s)−e−2(t−s)

4
sin2(t−s)

2
+ e2(t−s)−e−2(t−s)

4

−sin2(t−s)
2

+ e2(t−s)−e−2(t−s)

4
−sin2(t−s)

2
− e2(t−s)−e−2(t−s)

4
−sin2(t−s)

2
− e2(t−s)−e−2(t−s)

4
−sin2(t−s)

2
+ e2(t−s)−e−2(t−s)

4
cos2(t−s)

2
+ e2(t−s)+e−2(t−s)

4
cos2(t−s)

2
− e2(t−s)+e−2(t−s)

4
cos2(t−s)

2
− e2(t−s)+e−2(t−s)

4
cos2(t−s)

2
+ e2(t−s)+e−2(t−s)

4




0 −1
−1 0

0 0
0 0

[ uα(s)

ūα(s)

]
ds.
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The control function u(.) and states x1(.) and x2(.) are given respectively in Figure
1 for α ∈ [0, 1], where the red lines are the centers and the blue lines are the lower
bounds and the green lines are the upper bounds for fuzzy functions.

Example 4.2. Consider the following optimal fuzzy controlled system:

Min

∫ 1

0

ũ2(t)dt

s.t.

˙̃x1(t) = −2� x̃2(t)⊕ ũ(t)

˙̃x2(t) = 2� x̃1(t)

x̃1(0) = x̃2(0) = (1, 2, 3)

x̃1(1) = x̃2(1) = (−0.5, 0, 0.5)

Similar the optimal fuzzy controlled system (11), the above optimal controlled
system is changed to the following form:

Min

∫ 1

0

(u2
α(t) + ū2

α(t))dt

s.t. 
ẋ1α
˙̄x1α
ẋ2α
˙̄x2α

 =


0 0 0 −2
0 0 −2 0
2 0 0 0
0 2 0 0



x1α
x̄1α
x2α
x̄2α

+


1 0
0 1
0 0
0 0

[ uα
ūα

]

ẋ1α(0)
˙̄x1α(0)
ẋ2α(0)
˙̄x2α(0)

 =


2α+ (1− α)
2α+ 3(1− α)
2α+ (1− α)
2α+ 3(1− α)



ẋ1α(1)
˙̄x1α(1)
ẋ2α(1)
˙̄x2α(1)

 =


−0.5(1− α)

0.5(1− α)
−0.5(1− α)

0.5(1− α)


The Hamiltonian function for the above optimal controlled system is:

H = −(u2α(t) + ū2α(t)) +ψ1(−2x̄2α +uα) +ψ2(−2x2α + ūα) +ψ3(2x1α) +ψ4(2x̄1α).

By considering Theorem 3.1,

uα = 0.5ψ1

ūα = 0.5ψ2

and 
ψ̇1

ψ̇2

ψ̇3

ψ̇4

 =


0 0 −2 0
0 0 0 −2
0 2 0 0
2 0 0 0



ψ1

ψ2

ψ3

ψ4
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Now by using [19] we will have:

uα(t) =
1

8
[(2cos2t+ (e−2t + e2t))c1 + (2cos2t− (e−2t + e2t))c2

+ (−2sin2t+ (e−2t − e2t))c3 + (−2sin2t− (e−2t − e2t))c4] (13)

ūα(t) =
1

8
[(2cos2t− (e−2t + e2t))c1 + (2cos2t+ (e−2t + e2t))c2

+ (−2sin2t− (e−2t − e2t))c3 + (−2sin2t+ (e−2t − e2t))c4], (14)

where ci for i = 1, ..., 4 are real numbers. The solution of optimal controlled system
is: 

x1α
x̄1α
x2α
x̄2α

 =


cos2t

2 + e2t+e−2t

4
cos2t

2 − e2t+e−2t

4
−sin2t

2 + e2t−e−2t

4
cos2t

2 − e2t+e−2t

4
cos2t

2 + e2t+e−2t

4
−sin2t

2 − e2t−e−2t

4
sin2t

2 + e2t−e−2t

4
sin2t

2 − e2t−e−2t

4
cos2t

2 + e2t+e−2t

4
sin2t

2 − e2t−e−2t

4
sin2t

2 + e2t−e−2t

4
cos2t

2 − e2t+e−2t

4

−sin2t
2 − e2t−e−2t

4
−sin2t

2 + e2t−e−2t

4
cos2t

2 − e2t+e−2t

4
cos2t

2 + e2t+e−2t

4




2α+ (1− α)
2α+ 3(1− α)
2α+ (1− α)
2α+ 3(1− α)

+

∫ t

0


cos2(t−s)

2 + e2(t−s)+e−2(t−s)

4
cos2(t−s)

2 − e2(t−s)+e−2(t−s)

4
cos2(t−s)

2 − e2(t−s)+e−2(t−s)

4
cos2(t−s)

2 + e2(t−s)+e−2(t−s)

4
sin2(t−s)

2 + e2(t−s)−e−2(t−s)

4
sin2(t−s)

2 − e2(t−s)−e−2(t−s)

4
sin2(t−s)

2 − e2(t−s)−e−2(t−s)

4
sin2(t−s)

2 + e2(t−s)−e−2(t−s)

4

−sin2(t−s)
2 + e2(t−s)−e−2(t−s)

4
−sin2(t−s)

2 − e2(t−s)−e−2(t−s)

4
−sin2(t−s)

2 − e2(t−s)−e−2(t−s)

4
−sin2(t−s)

2 + e2(t−s)−e−2(t−s)

4
cos2(t−s)

2 + e2(t−s)+e−2(t−s)

4
cos2(t−s)

2 − e2(t−s)+e−2(t−s)

4
cos2(t−s)

2 − e2(t−s)+e−2(t−s)

4
cos2(t−s)

2 + e2(t−s)+e−2(t−s)

4




1 0
0 1
0 0
0 0

[ uα(s)
ūα(s)

]
ds

Now by replacing (13) and (14) in the above equations and using the trapezoidal
integration for approximating the integral we can calculate the states of system.
The control function u(.) and states x1(.) and x2(.), are respectively given in Figure
2 for α ∈ [0, 1] where the red lines are the centers and the blue lines are the lower
bounds and the green lines are the upper bounds for fuzzy functions.

Example 4.3. Consider the system shown in Figure 3. The variables of interest
are noted on the figure and defined as: M1, M2 = mass of carts, p̃, q̃ = position
of carts, ũ = external force acting on system, k1, k2 = spring constants, and b1,
b2 = damping coefficients, and ˙̃p, ˙̃q = velocity of M1 and M2, respectively. We
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assume that the carts have negligible rolling friction. We consider any existing
rolling friction to be lumped into the damping coefficients, b1 and b2. The task is
to control the carts from the initial point p̃(t0), q̃(t0), ˙̃p(t0), and ˙̃q(t0) to final target

p̃(tf ), q̃(tf ), ˙̃p(tf ), and ˙̃q(tf ), by using external force acting ũ(.).
We use Newton’s second law (sum of the forces equals mass of the object multiplied
by its acceleration) to obtain the motion equations. We assume that x̃1 = p̃, x̃2 = q̃,

x̃3 = ˙̃p and x̃4 = ˙̃q, therefore the above fuzzy controlled dynamical system can be
modeled by the following fuzzy linear control system ( see [3] for more details):

˙̃x = A� x̃⊕B � ũ

where

x̃ =


x̃1
x̃2
x̃3
x̃4

 =


p̃
q̃
˙̃p
˙̃q

 ,

A =


0 0 1 0
0 0 0 1

− k1
M1

k1
M1

− b1
M1

b1
M1

k1
M2

−k1+k2M2

b1
M2

− b1+b2M2

 ,
and

B =


0
0
1
M1

0

 .
Suppose that the two rolling carts have the following parameter values: k1 =
150N/m, k2 = 700N/m, b1 = 15Ns/m, b2 = 30Ns/m, M1 = 5kg, and M2 = 20kg.
The response of the two rolling cart system is shown in Figure 4, when the boundary
conditions are p̃(0) = (9, 10, 11), q̃(0) = (−1, 0, 1), and ˙̃p(0) = ˙̃q(0) = (−0.5, 0, 0.5),

and p̃(2) = q̃(2) = ˙̃p(2) = ˙̃q(2) = (−0.5, 0, 0.5).

5. Conclusion

We studied fuzzy linear time invariant controlled system and fuzzy optimal con-
trolled system, where in the fuzzy optimal control system, the target is to minimize
a functional subject to fuzzy differential equation with fuzzy initial conditions. By
applying α-cuts and presenting numbers in more compact form by moving to the
field of complex numbers, the fuzzy controlled system and fuzzy optimal controlled
system, extended to a new form involve in lower and upper state and control. Three
numerical examples are given to show the effectiveness of the method.

Acknowledgements. The authors would like to express their sincere gratitude to
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Figure 1. The Control and State Functions for Example 4.1
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Figure 2. The Control and State Functions for Example 4.2
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Figure 3. Two Rolling Carts are Attached with Springs,
Dampers and the Crisp State Functions for Example 4.3

Figure 4. The Fuzzy State Functions for Example 4.3
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