تعداد نشریات | 27 |
تعداد شمارهها | 604 |
تعداد مقالات | 6,159 |
تعداد مشاهده مقاله | 9,107,416 |
تعداد دریافت فایل اصل مقاله | 5,939,265 |
$\mathcal{I}_2$-convergence of double sequences of\\ fuzzy numbers | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 4، دوره 10، شماره 3، شهریور 2013، صفحه 37-50 اصل مقاله (336.51 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2013.809 | ||
نویسندگان | ||
Erdinc. Dundar ![]() ![]() | ||
1Department of Mathematics, Afyon Kocatepe University, 03200 Afyonkarahisarn,Turkey | ||
2Department of Mathematics, Celal Bayar University, 45040 Manisa, Turkey | ||
چکیده | ||
In this paper, we introduce and study the concepts of $\mathcal{I}_2$-convergence, $\mathcal{I}_2^{*}$-convergence for double sequences of fuzzy real numbers, where $\mathcal{I}_2$ denotes the ideal of subsets of $\mathbb N \times \mathbb N$. Also, we study some properties and relations of them. | ||
کلیدواژهها | ||
Ideal؛ Double sequences؛ $\mathcal{I}$-Convergence؛ Fuzzy number sequences | ||
مراجع | ||
\bibitem{Ba-Fb} B. Altay and F. Ba\d{s}ar, \emph{Some new spaces of double sequences}, J. Math. Anal. Appl., \textbf{309(1)} (2005), 70--90. \bibitem{altýn} H. Alt{\i}nok, Y. Alt{\i}n and M. I\d{s}{\i}k, \emph{Statistical convergence and strong p-Ces\'{a}ro summability of order $\beta$ in sequences of fuzzy numbers}, Iranian Journal of Fuzzy Systems, \textbf{9(2)} (2012), 63--73. \bibitem{bede}B. Bede and S. G. Gal, \textit{Almost periodic fuzzy-number-valued functions}, Fuzzy Sets and Systems, \textbf{147} (2004), 385--403. \bibitem{cc-ba} \d{C}. CÇakan and B. Altay, \emph{Statistically boundedness and statistical core of double sequences}, J. Math. Anal. Appl., \textbf{317} (2006), 690--697. \bibitem{das 1} P. Das, P. Kostyrko, W. Wilczy\'{n}ski and P. Malik, \emph{I and $I^{*}$-convergence of double sequences}, Math. Slovaca, \textbf{58(5)} (2008), 605--620. \bibitem{das 2} P. Das and P. Malik, \emph{On extremal I-limit points of double sequences}, Tatra Mt. Math. Publ., \textbf{40} (2008), 91--102. \bibitem{edba FU} E. D\"{u}ndar and B. Altay \emph{$\mathcal{I}_2$-uniform convergence of double sequences of functions}, (under communication). \bibitem{fang}J. X. Fang and H. Huang, \textit{On the level convergence of a sequence of fuzzy numbers}, Fuzzy Sets and Systems, \textbf{147} (2004), 417-415. \bibitem{fast} H. Fast, \emph {Sur la convergence statistique}, Colloq. Math., \textbf{2} (1951), 241--244. \bibitem{fr-st} J. A. Fridy, \emph{On statistical convergence}, Analysis, \textbf{5} (1985), 301--313. \bibitem{fr- c.o} J. A. Fridy and C. Orhan, \emph{Statistical limit superior and inferior}, Proc. Amer. Math. Soc., \textbf{125} (1997), 3625--3631. \bibitem{fr-st-lim} J. A. Fridy, \emph{Statistical limit points}, Proc. Amer. Math. Soc., \textbf{118} (1993), 1187--1192. \bibitem{kos1} P. Kostyrko, T. \u{S}al\'{a}t and W. Wilczy\'{n}ski, \emph{I-convergence}, Real Anal. Exchange, \textbf{26(2)} (2000), 669-686. \bibitem{kos2} P. Kostyrko, M. Ma\v{c}aj, T. \u{S}al\'{a}t and M. Sleziak, \emph{I-convergence and extremal I-limit points}, Math. Slovaca, \textbf{55} (2005), 443--464. \bibitem{kumar 1} V. Kumar, \emph{On I and $I^{*}$-convergence of double sequences}, Math. Commun., \textbf {12} (2007), 171--181. \bibitem{kumar F} V. Kumar and K. Kumar, \emph{On the ideal convergence of sequences of fuzzy numbers}, Information Sciences, \textbf{178} (2008), 4670--4678. \bibitem{Matloka} M. Matloka, \emph{Sequences of fuzzy numbers}, Busefal, \textbf{28} (1986), 28--37. \bibitem{murse-st} Mursaleen and O. H. H. Edely, \emph{Statistical convergence of double sequences}, J. Math. Anal. Appl., \textbf{288} (2003), 223--231. \bibitem{Nanda} S. Nanda, \emph{On sequences of fuzzy numbers}, Fuzzy Sets and Systems, \textbf{33} (1989), 123--126. \bibitem{nabiev} A. Nabiev, S. Pehlivan and M. G\"{u}rdal, \emph{On I-Cauchy sequence}, Taiwanese J. Math., \textbf {11(2)} (2007), 569--576. \bibitem{nuray} F. Nuray and W. H. Ruckle, \emph{Generalized statistical convergence and convergence free spaces}, J. Math. Anal. Appl., \textbf{245} (2000), 513--527. \bibitem{nuray 2} F. Nuray, \emph{Lacunary statistical convergence of sequences of fuzzy numbers}, Fuzzy Sets and Systems, \textbf{99} (1998), 353--355. \bibitem{nuray 3} F. Nuray and E. Sava\d{s}, \emph{Statistical convergence of sequences of fuzzy numbers}, Math. Slovaca, \textbf{45(3)} (1995), 269--273. \bibitem{prinsgheim} A. Pringsheim, \emph{Zur theorie der zweifach unendlichen Zahlenfolgen}, Math. Ann., \textbf{53} (1900), 289--321. \bibitem{rath} D. Rath and B. C. Tripaty, \emph{On statistically convergence and statistically Cauchy sequences}, Indian J. Pure Appl. Math., \textbf{25(4)} (1994), 381--386. \bibitem{saadati} R. Saadati, \emph{On the I-fuzzy topological spaces}, Chaos, Solitons and Fractals, \textbf{37} (2008), 1419--1426. \bibitem{salat st} T. \u{S}al\'{a}t, \emph {On statistically convergent sequences of real numbers}, Math. Slovaca, \textbf{30} (1980), 139--150. \bibitem{Salat} T. \u{S}al\'{a}t, B. C. Tripaty and M. Ziman, \emph{On I-convergence field}, Ital. J. Pure Appl. Math., \textbf {17} (2005), 45--54. \bibitem{Savas1} E. Sava\d{s}, \emph{On statistical convergent sequences of fuzzy numbers}, Information Sciences, \textbf{137} (2001), 277--282. \bibitem{Savas2} E. Sava\d{s} and Mursaleen, \emph{On statistically convergent double sequences of fuzzy numbers}, Information Sciences, \textbf{162} (2004), 183--192. \bibitem{Savas3} E. Sava\d{s}, \emph{A note on double sequences of fuzzy numbers}, Turk. Jour. Math., \textbf{20(20)} (1996), 175--178. \bibitem{Savas4} E. Sava\d{s}, \emph{$(A)_{\Delta}$-double sequence spaces of fuzzy numbers via orlicz function}, Iranian Journal of Fuzzy Systems, \textbf{8(2)} (2011), 91--103. \bibitem{scho} I. J. Schoenberg, \emph {The integrability of certain functions and related summability methods}, Amer. Math. Monthly, \textbf {66} (1959), 361--375. \bibitem{otfb} \"{O}. Talo and F. Ba\d{s}ar, \emph{Determination of the duals of classical sets of sequences of fuzzy numbers and related matrix transformations}, Comput. Math. Appl., \textbf{58} (2009), 717--733. \bibitem{tri 1} B. Tripathy and B. C. Tripathy, \emph{On I-convergent double sequences}, Soochow J. Math., \textbf {31} (2005), 549--560. \bibitem{tri 2} B. C. Tripathy, \emph{Statistically convergent double sequences}, Tamkang J. Math., \textbf{34(3)} (2003), 231--237. \bibitem{tri 3} B. C. Tripathy and B. Sarma, \emph{Double sequence spaces of fuzzy numbers defined by Orlicz function}, Acta Math. Sci., \textbf{31B(1)} (2011), 134--140. \bibitem{z} L. A. Zadeh, \textit{Fuzzy sets}, Information and Control, \textbf{8}(1965), 338--353. | ||
آمار تعداد مشاهده مقاله: 2,793 تعداد دریافت فایل اصل مقاله: 2,013 |