تعداد نشریات | 31 |
تعداد شمارهها | 714 |
تعداد مقالات | 6,952 |
تعداد مشاهده مقاله | 11,426,619 |
تعداد دریافت فایل اصل مقاله | 7,804,657 |
تاثیر تورم و رشد نقدینگی بر نسبت مصون سازی در مقابل تلاطمات رژیم های مختلف قیمت نفت بوسیله مشارکت در بازار طلا:رهیافت RS-DCC | ||
اقتصاد باثبات | ||
دوره 4، شماره 4 - شماره پیاپی 13، دی 1402، صفحه 127-156 اصل مقاله (1.6 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22111/sedj.2024.46405.1378 | ||
نویسندگان | ||
تیمور محمدی* 1؛ سارا اکبری2؛ حمیدرضا ارباب3؛ رضا طالبلو4 | ||
1استاد،گروه اقتصاد نظری،دانشگاه علامه طباطبائی،تهران، ایران | ||
2دانشجوی دکتری اقتصاد نظری(گرایش مالی)،دانشگاه علامه طباطبائی، ، تهران، ایران | ||
3دانشیار، گروه اقتصاد بازرگانی، دانشگاه علامه طباطبائی،تهران، ایران | ||
4دانشیار،گروه اقتصاد نظری، دانشگاه علامه طبا طبائی، تهران، ایران. | ||
چکیده | ||
قیمت نفت و فرآوردههای نفتی به همدیگر مرتبط و تلاطمات قیمت آنها تقریباً موازی است. بنگاه هایی که از نفت خام درمحصولات خود استفاده میکنند با ریسک تلاطم قیمت روبرو هستند. این تلاطم در هردورهای رفتار متفاوتی از خود نشان میدهد که تحت عنوان رژیمهای متفاوت نفتی شناخته میشود. اقتصاد دچار تلاطم بوده و خریداران دچار زیان هستند، خریداران در تلاشند که دارایی اصلی خود را با یک دارایی دیگر مصون کنند و این مصونسازی در رژیمهای متفاوت نرخ متفاوتی دارد. درنتیجه نیاز به ارائهی یک الگو برای این فضا میباشد. در این پژوهش تأثیر تورم و رشد نقدینگی بر نسبت مصونسازی در مقابل تلاطمات رژیمهای مختلف قیمت نفت مورد بررسی است. برای این منظور قیمت نفت و طلا در بازه زمانی فروردین سال1390 لغایت اسفند1398به صورت ماهانه درنظرکرفته شده و با مدل RS-DCC در نرم افزار متلب اجرا شده است. نسبت مصونسازی بهینه تحت رژیم اول معادل 66 درصد و تحت رژیم دوم معادل 26 درصد است. دو رژیم قیمتی نفت بالای صد دلار و پایین صد دلار در این پژوهش مشاهده شد که مشابه سالهای 1386-1388میباشد. دورانی که اقتصاد دچار تورم و رشد نقدینگی بالا بوده نسبت بهینه مصونسازی کاهش قابل توجهی داشته است و در دوره های تورم پایین، طلا به عنوان یک بهشت امن توانسته مصونسازی بهینهتری را محقق سازد. | ||
کلیدواژهها | ||
مصون سازی؛ رژیم های نفتی؛ قیمت طلا؛ رژیم سوییچینگ؛ RS-DCC | ||
مراجع | ||
Amiri;Mahdie, Mirzapour ;Akbar ,Akbari moghadam; Beitollah (2019), Analyzing profitable strategies on option market - evidence from the gold coin option contracts on the Iran mercantile exchange,knowledge of investment, no.30[In Persian](NO DOI)https://jik.srbiau.ac.ir/article_14426.html?lang=en
Abunouri, Ismail, Khanalipour, Amir, (2010), Does uncertainty resulting from crude oil price fluctuations affect its supply? An application of GARCH, ARDL, Journal of Economic Research, No. 91, Summer 2008. [In Persian]https://dorl.net/dor/20.1001.1.00398969.1389.45.2.2.5
Moradi, AliMohammad, (2013), Estimation of the optimal ratios of static and dynamic risk coverage and comparison of their effectiveness in the natural gas futures market, Eqstad Energy Quarterly, 2nd year of Shamah 8. [In Persian] (NO DOI) https://jiee.atu.ac.ir/article_708.html?lang=en
Arshadhi, Ali, (2013) Modeling oil price turbulences as a template for measuring the uncertainty index based on an ARIMA-GARCH model, Economic Studies Quarterly, 8th Year, Number 29, Fall 2013. [In Persian] (NO DOI) https://www.sid.ir/paper/99455/en
Bacon, Robert W. (1991), “Rockets and Feathers: The Asymmetric Speed of Adjustment of U. K. Retail Gasoline Prices to Cost Changes,” Energy Economics NO.13- https://doi.org/10.1016/0140-9883(91)90022-R
Badi, Kane, Marcus, Investment Management (Volume 1), translated by: Farhadi, Rooh Elah, Shariat Panahi, Seyed Mojtabi (2013), Tehran, Exchange Publications affiliated with Exchange Information and Services Company, Third Edition (2014) . [In Persian]
Badi, Kane, Markus, Investment Management (Volume II), translated by Farhadi, Rooh Elah, Shariat Panahi, Seyed Mojtabi (2013), Burs Publications Affiliated to Burs Information and Services Company, Third Edition (2014). [In Persian]
Balke, N. S., Brown, S. P. A., Yu¨ cel, M. K., 1998. Crude oil and gasoline DCC approach - https://doi.org/10.5547/01956574.40.2nbeh
Borenstein, S. Cameron, A. C., Gilbert, R., 1997. Do gasoline prices respond asymmetrically to crude oil price changes? The Quarterly Journal of Economics-](NO DOI)- https://www.jstor.org/stable/2951284
Borenstein, S., Shepard, A., 2002. Sticky prices, inventories, and market power in wholesale gasoline markets. https://doi.org/10.2307/2696378
Bollerslev, T., Gibson, M., Zhou, H., 2011. Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities.J.Econometrics160 https://doi.org/10.1016/j.jeconom.2010.03.033
Bouri, E., Chen, Q., Lien, D., & Lv, X. (2017). Causality between oil prices and the stock market in China: The relevance of the reformed oil product pricing mechanism.International Review of Economics & Finance, 48-https://doi.org/10.1016/j.iref.2016.11.004
Chkili, W., Hammoudeh, S., & Nguyen, D. K. (2014). Volatility forecasting and risk management for commodity markets in the presence of asymmetry and longmemory. Energy Economics. https://doi.org/10.1016/j.eneco.2013.10.011
Chang, C.L., McAleer, M., Tansuchat, R., 2010. Analyzing and forecasting volatility spillovers, asymmetries and hedging in major oil markets. Energy Econ. 32- https://doi.org/10.1016/j.eneco.2010.04.014
Delavari, Majid, Rehmati, Zeinab, (2009), Investigating the volatility of gold coin price fluctuations in Iran using ARCH models, Danesh and Tehsehe magazine, 17th year, number 30. [In Persian]- https://doi.org/10.22067/pm.v17i30.27238
Denni, M., and Frewer G., 2006. new evidence on the relationship between crude oil and petroleum product prices. Universitá Degli Studi Roma Tre.Economic Review, First Quarter- NODOI- https://www.researchgate.net/publication/24125360_New_evidence_on_the_relationship_beetween_crude_oil_and_petroleum_product_prices
Michel M. Dacorogna, Olivier V. Pictet, in An Introduction to High-Frequency Finance, 2001
Ebrahimi; Mohsen, Babaei Agh Esmaili; Majid, kafili; Vahid,(2016) Investigate price regimes of two prime index in the world oil market(Brent and WTI) before and after the financial crisis: Evidence from the Markov regime-switching model, Quarterly Journal of Quantitative Economics (former Economic Studies), Volume 13, number 3 - Autumn 2016. [In Persian]-https://doi.org/10.22055/jqe.2016.12537
Engle, Robert, (2002) Dynamic Conditional Correlation, Journal of Business &Economic Statistics, 20- NODOI- https://www.bayes.city.ac.uk/__data/assets/pdf_file/0003/78843/Engle2028200229.pdf
Engle, Robert F., Sheppard, Kevin, Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH, economic research,2001, No.8554- https://doi.org/10.3386/w8554
Fan, Y., Zhang, Y. J., Tsai, H. T., & Wei, Y. M. (2008). Estimating the ‘Value at Risk’ of crude oil price and its spillover effect using the GED-GARCH approach. EnergyEconomics, 30- https://doi.org/10.1016/j.eneco.2008.04.002
Fotros; Mohammad Hasan, hoshidari; Maryam, (2017), The amount of influence fluctuations in the price index of Tehran Stock Exchange and Dubai fluctuations in oil prices (WTI), Applied Economic Studies Iran, Quarterly Journal, Volume 6, Issue 22, July 2017. [In Persian] 10.22084/AES.2017.11581.2261
Hamilton, J. (1994), Time Series Analysis. Princeton, NJ: Princeton University Press.
Hammoudeh S, Yuan Y.,(2008), Metal Volatility in Presence of Oil and Interest Rate Shocks”, Energy Econ,30- https://doi.org/10.1016/j.eneco.2007.09.004
Hamilton, J.D., 1989. A new approach to the economic analysis of nonstationary time series and the business cycle. Econ. J. Econ. Soc- https://doi.org/10.2307/1912559.
Hassanzadeh, Ramadan, 2018, research methods in behavioral sciences, Savalan Publishing House, Tehran, Jap 11. [In Persian]
Hillebrand, E. (2005). Neglecting parameter changes in GARCH models. Journal of Econometrics, 129(1), 121–138 Kilian, L., & Vigfusson, R. J. (2011). Nonlinearities in the oil price–output relationship. Macroeconomic Dynamics, 15. https://doi.org/10.1016/j.jeconom.2004.09.005
Hull, J. (2015). Options, futures, and other derivatives. Upper Saddle River, N.J: Pearson/Prentice Hall.
Jalali-Naini, A. H. and R. Eskandari, 2009. "Causality in the Mean and Variance between Crude Oil and Refined Products Prices in the US and European Markets. " Working Paper, IIES –NODOI- https://www.sid.ir/fa/VEWSSID/J_pdf/43913882201.pdf
Kirk ,Robert J, in IFRS: A Quick Reference Guide, 2009
Kilian, L., & Vigfusson, R. J. (2011). Nonlinearities in the oil price–output relationship. Macroeconomic Dynamics, 15.
Kaufmann, R.K., Laskowski, C., 2005. Causes for an asymmetric relation between the price of crude oil and refined petroleum products. Energy Policy 3- https://doi.org/10.1016/j.enpol.2004.01.013
KuangxiSuabYinhongYaocChengliZhengabWenzhaoXie,(2023), A novel hybrid strategy for crude oil future hedging based on the combination of three minimum-CVaR models, International Review of Economics & Finance, Volume 83, January 2023- https://doi.org/10.1016/j.iref.2022.08.019
Lebo, J. M. & Steffensmeier, J. M. (2008) Dynamic Conditional Correlation in Political Science; American Jour. of Political Science., Vol. 52, No. 3: 688-704. Markowitz, H. M. (1952) Portfolio Selection; The Journal of Finance, Vol. 7, No. 1-NODOI-https://www.jstor.org/stable/25193841
Li ,Yu, Umair, Muhammad(2023), The Protective Nature of Gold During Times of Oil Price Volatility: An Analysis of the COVID-19 Pandemic, The Extractive Industries and Society,June 2023- https://doi.org/10.1016/j.exis.2023.101284
Markowitz, H., 1952. Portfolio selection. J. Finance 7, 77–91. https://doi.org/10.2307/2975974
McAleer, M., Tansuchat, R., 2011. Crude oil hedging strategies using dynamic multivariate GARCH. Energy Econ. 33- https://doi.org/10.1016/j.eneco.2011.01.009
Najafi; Fazel, mutual risk coverage between stocks, gold and bitcoin in Iran, 2018, senior thesis. [In Persian]
Neisy, Abdolsadeh, Salman gharaei, Kamran, (2017) Financial Engineering and Market Modeling, Tehran, Allameh Tabatabai University Publications. [In Persian]
Pelletier,Denis , Regime switching for dynamic correlations, Journal of Econometrics Volume 131, 2006-https://doi.org/10.1016/j.jeconom.2005.01.013
Peltzman, S., 2000. Prices rise faster than they fall. J. Polit. Econ. 108- https://doi.org/10.1086/262126
Radpour, Maysam, Abdo Tabrizi, Hossein, 2009, Market risk measurement and management, Aghaz Publications, 1st edition. [In Persian]
Raei, Reza, khaje haghverdi;soroush, hajiesmaeil; mohammadreza,2016, calculating of value at risk for portfolio of coin and bourse index; comparing to models: GARCH and M-GARCH, Journal of Financial Engineering and Portfolio Management, year 2016, Volume 6, Issue 25 ,January [In Persian] (NODOI) https://www.sid.ir/paper/197679/en
RAND J. Econ Enders, W., Granger, prices: an asymmetric relationship? Federal Reserve Bank of Dallas adjustment with an example Chang, C.L.
Radchenko, S., 2005a. Lags in the response of gasoline prices to changes in crude oil prices: The role of short-term and long-term shocks. Energy Economics 27-https://doi.org/10.1016/j.eneco.2005.04.004
Ross, Stephen A., Westerfield; Randolph, Jordan; Bradford, fundamental of corporate finance, (Volume 1), translated by Jahankhani; Ali, Shuravi; Mojtaba, (2008), Organization for Researching and Composing University textbooks in the Humanities or SAMT, 10th edition (2017). [In Persian]
Samadi Ghoshqchi, Nagin, 2016, rights and obligations of the parties to futures contracts in Iran Commodity Exchange, thesis. [In Persian]
Sayadi; Mohammad, Ebrahimi; Mohsen, Davari; Atefeh, (2022) A Copula- based Quantile Model for Crude oil Return-Volatility Dependence Modelling: Case of Iran Heavy Oil, Quarterly Energy Economics Review, Volume 17, Issue 71 (1-2022) [In Persian]-NO DOI-https://iiesj.ir/search.php?slc_lang=en&sid=1
Suri, Ali, 2015, Advanced Econometrics (Volume 2), Tehran, Cultural Publications, 2015, fifth edition. [In Persian]
Tang, L., Dai, W., Yu, L., & Wang, S. (2015). A novel CEEMD-based EELM ensemble learning paradigm for crude oil price forecasting. International Journal of InformationTechnology and Decision Making,32- https://doi.org/10.1142/S0219622015400015
Teterin, P., Brooks, R., & Enders, W. (2016). Smooth volatility shifts and spillovers in US crude oil and corn futures markets. Journal of Empirical Finance, 3- https://doi.org/10.1016/j.jempfin.2016.05.005
Tully E., Lucey B.M., (2007), A Power GARCH Examination of the Gold Market. Res, Int. Bus. Finance, 2- https://doi.org/10.1016/j.ribaf.2006.07.001,
Wei, Y., Wang, Y., & Huang, D. (2010). Forecasting crude oil market volatility: Further evidence using GARCH-class models. Energy Economics, 32,- https://doi.org/10.1016/j.eneco.2010.07.009
Wishnoff, J. R. (2000). Hedging your bets: L2 learners’ acquisition of pragmatic devices in academic writing and computed-mediated discourse.Second Language Studies 19
Xing Yu a, Yanyan Li a, Xilin Shen a , Yunjie Rao a , Yongjun Liu,(2022), State-dependent hedge strategy for crude oil spot and futures markets, Borsa _ Istanbul Review Borsa _ Istanbul Review(2022)- https://doi.org/10.1016/j.bir.2022.08.008
Yahiizadeh, Mahmoud, Hassannejad, Mohammad (2004), Feasibility of using trading options in the capital market of Iran, Payam Manzair, No. 17, Tehran. [In Persian]
Zeinvand; abdullah , Shayan, Dob, Asieh, Asgari, Heshmat Elah, (2016), The Effect Of Terms Of Trade and its Uncertainty On The Industrial Sector's Value Added In Iran, Quarterly journal of Quantitative Economics, Volume. 13, Number. 1, Spring 2016, June 2016. [In Persian]- https://doi.org/10.22055/jqe.2016.12326
Zamani, Mehrzad, (2011), dynamic behaviors of oil and gas prices and their volatilities using the ARDL-GARCH approach, Quarterly Journal of Energy Economics Review, Year 2011, Volume 8, issue 29, Summer 2010. [In Persian]-NO DOI- https://www.sid.ir/paper/99517/en
Zhang, Y. J., & Wang, Z. Y. (2013). Investigating the price discovery and risk transfer functions in the crude oil and gasoline futures markets: Some empirical evidence.Applied Energy.- https://doi.org/10.1016/j.apenergy.2012.10.066
Zhiyuan Pan,YudongWang , Li Yang,(2014) , Hedging crude oil using refined product: A regime switching asymmetric, Energy Economics 46 (2014)- https://doi.org/10.1016/j.eneco.2014.05.014
Yue-Jun Zhang, Yi-Ming Wei, (2010), The Crude Oil Market and the Gold Market: Evidence for Cointegration, Causality and Price Discovery, Journal of Resources Policy ,35- https://doi.org/10.1016/j.resourpol.2010.05.003 | ||
آمار تعداد مشاهده مقاله: 248 تعداد دریافت فایل اصل مقاله: 289 |