
تعداد نشریات | 33 |
تعداد شمارهها | 770 |
تعداد مقالات | 7,474 |
تعداد مشاهده مقاله | 12,460,521 |
تعداد دریافت فایل اصل مقاله | 8,475,119 |
مدل سازی و پیش بینی ماهانه قیمت فولاد در ایران | ||
اقتصاد باثبات | ||
دوره 4، شماره 4 - شماره پیاپی 13، دی 1402، صفحه 60-95 اصل مقاله (1.25 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22111/sedj.2024.47309.1417 | ||
نویسندگان | ||
طیبه رهنمون پیروج1؛ سید صالح اکبر موسوی* 2؛ منصور عسگری3 | ||
1دکتری اقتصاد و پژوهشگر مؤسسه مطالعات و پژوهشهای بازرگانی، تهران، ایران. | ||
2استادیار مؤسسه مطالعات و پژوهشهای بازرگانی، تهران، ایران | ||
3دانشیار مؤسسه مطالعات و پژوهشهای بازرگانی، تهران، ایران. | ||
چکیده | ||
کاربرد فراوان و متعدد فولاد در صنایع مختلف، آن را به کالایی استراتژیک تبدیل کرده و قیمت آن همواره مورد توجه صاحبان صنایع بوده است. از این رو، دسترسی به پیشبینیهای دقیق از روند قیمتی فولاد و محصولات آن، حائز اهمیت است. براین اساس، در مطالعه حاضر، ضمن شناسایی متغیرهای اثرگذار بر قیمت فولاد، پیشبینی بروننمونهای برای دوره زمانی 1402:07 تا 1403:03 با بهرهگیری از مدل خودرگرسیون برداری (VAR) انجام شده است. در ابتدا، مطابق نتایج آزمون هم انباشتگی یوهانسون- جوسیلیوس، رابطه بلندمدت بین متغیرهای مدل تأیید شد. همچنین، ضریب جمله تصحیح خطا (ECM) برابر 0842/0- تخمین زده شد. تجزیه و تحلیل توابع واکنش آنی و شوکهای وارد بر متغیرها نیز نشان داد که شوک ایجاد شده در متغیرهای نرخ ارز غیررسمی و شاخص قیمت تولیدکننده صنعت (زیرگروه ساخت فلزات پایه)، به ترتیب با 8/6 و 5/6 درصد به شکل استاندارد، بیش از سایر متغیرهای مدل بر نوسانات قیمت فولاد مؤثر بودهاند. به علاوه، تحلیلهای مربوط به تجزیه واریانس، نشان داد که شاخص تولیدکننده صنعت با 18/16 درصد و نرخ ارز غیررسمی با 7/11 درصد بعد از قیمت خود فولاد، بیشتر از سایر متغیرها بر نوسانات قیمت این محصول، اثرگذار بودهاند. در نهایت، پس از برآورد پیشبینی برون نمونهای، رشد 5 درصدی در قیمت فولاد از 302445 ریال در مهر 1402 به 321552 ریال در خرداد ماه 1403 پیشبینی شده است. نتایج معیارهای ارزیابی پیشبینی نیز، بیانگر دقت بالای آن بوده است. مطابق نتایج، مهمترین توصیههای سیاستی شامل به روزرسانی تکنولوژیها، تجهیزات و ماشین آلات مورد استفاده در تولید محصولات فولادی به منظور توسعه تولید فرآوردههای فولادی، صرفهجویی در مصرف انرژی و هزینههای تولید، اتخاذ سیاستهای مناسب پولی و ارزی و افزایش صادرات با تمرکز بر بازاریابی و فروش محصولات فولادی (به منظور جلوگیری از خام فروشی)، از طریق توسعه تولیدات، افزایش تنوع، کیفیت و ماندگاری محصولات فولادی تولیدی قابل ارائه است. | ||
کلیدواژهها | ||
پیش بینی ماهانه قیمت؛ محصولات فولادی؛ مدل خودرگرسیون برداری | ||
مراجع | ||
Abdi, H. (2012). The Effect of Government Infrastructure Investments on Economic Growth in Iran. Master thesis, University of Tabriz, Tabriz. (In Persian). https://ganj.irandoc.ac.ir/#/articles/e77912e1bc64d5645b2e2634f7e90ed2/fulltext Agalega, E. & Antwi, S. (2013). The impact of macroeconomic variables on gross domestic product: empirical evidence from Ghana, International Business Research, 6(5), 108. DOI:10.5539/ibr.v6n5p108
Aghaei, K. & Pourmiri, B. (2006). Using artificial neural networks (ANN) and comparing its results with the ARIMA method. Quarterly Journal of Quantitative Economics, 3(1), 133-162 (In Persian). https://www.noormags.ir/view/fa/articlepage/252980/
Akanni, P. O. Oke, A. E. & Omotilewa, O. J. (2014). Implications of rising cost of building materials in Lagos State Nigeria. SAGE Open, 4(4), 1-7. https://doi.org/10.1177/215824401456121
Brown, P. & Hardy, N. (2019). Forecasting base metal prices with the Chilean exchange rate. Resources Policy, 62, 256–281. https://doi.org/10.1016/j.resourpol.2019.02.019
Central Bank of the Islamic Republic of Iran. (2023). Economic Research and Policy Department, Economic Time Series Database, Time |Series of Unofficial Exchange Rates, Tehran. (In Persian). Available: https://tsd.cbi.ir/Display/Content.aspx
Chen, J., Jin, F., Ouyang, G., Ouyang, J., & Wen, F. (2019). Oil price shocks, economic policy uncertainty, and industrial economic growth in China. PloS one, 14(5), e0215397. https://doi.org/10.1371/journal.pone.0215397
Consumers and Producers Protection Organization. (2023). The Monthly Price Time Series of Various Oils, Ministry of Industry, Mine and Trade, Tehran. (In Persian), Available: https://cppo.mimt.gov.ir/
Donya-e-eqtesad Newspaper. (2021). Routing of iron ore. No. 5201, news number: 3775354, (In Persian). https://donya-e-eqtesad.com/
Dutta, A. (2018). Impacts of oil volatility shocks on metal markets: a research note. Resources Policy, 55, 9-19. https://doi.org/10.1016/j.resourpol.2017.09.003
Farajian, P. & Farajian, N. (2022). Global iron ore price forecasting using neural networks. Quarterly Journal of System and Productivity Engineering, 1(4), 113-126, (In Persian). https://systems.eyc.ac.ir/article_243419.html
Firdaus, A. & Amrina, U. (2023). Modeling the Price Forecast for Construction Steel: A Case Study in EPC Company. E3S Web of Conferences 399, 03020. DOI:10.1051/e3sconf/202339903020
Gudarzi, Hossein. (2007). Forecasting Iran's crude steel demand in 2021. The Journal of Planning and Budgeting, 4, 209-232 (In Persian). DOI: 20.1001.1.22519092.1386.12.4.3.4
Haghighat, J. & Akbar Mousavi, S. S. (2017). Applied Econometrics with JMulTi and EViews 9 software, nooreelm, Tehran. (In Persian). https://www.adinehbook.com/gp/product/6001692165
Hu, D. (2010). Analysis of Influences from Exchange Rate to Pricing of China Steel Industry. International Conference on System Science and Engineering, Texas A&M International University Laredo, Texas. DOI: 10.1109/ICSSE.2010.5551825
Information network price of gold, coins, and currency. (2023). Price of Iron Ore 62% Fe CFR, (In Persian), Available: https://www.tgju.org/profile/base-us-iron-ore/technical
Iranian Steel Producers Association (ISPA). (2023). (In Persian), Available: https://steeliran.org/
Kazemian, Mina, Afshar Kazemi, Mohammad Ali, Fathi Hafshejani, Kiamars, & Motadel, Mohammadreza. (2023). Determining the Optimal Price in the Steel Industry Using Multilateral Monopoly Patterns with the Approach of Neural Networks and Game Theory. Industrial Management Studies, 21(68), 35-66 (In Persian). DOI: 10.22054/jims.2023.68936. 2798
Khojamli, A. Janfada, M. & Takhmchi, B. (2010). Iron ore price forecasting using time series. 29th Earth Sciences Conference, Geological Survey & Mineral Exploration of Iran, (In Persian). https://gsi.ir/fa/articles/10310/
Korhonen, I., & Ledyaeva, S. (2010). Trade linkages and macroeconomic effects of the price of oil. Energy Economics, 32(4), 848-856. https://doi.org/10.1016/j.eneco.2009.11.005
Kwas, Marek, Paccagnini, Alessia, Rubaszek, Michal. (2021). Common Factors and the Dynamics of Industrial Metal Prices. A Forecasting Perspective. Resources Policy, 74, 1-10. https://doi.org/10.1016/j.resourpol.2021.102319
Liu, Y. Li, H. Guan, J. Liu, X. Guan, Q. & Sun, Q. (2019). Influence of different factors on prices of upstream, middle and downstream products in China's whole steel industry chain: Based on Adaptive Neural Fuzzy Inference System. Resources Policy, 60, 134-142. https://doi.org/10.1016/j.resourpol.2018.12.009
Ma, Y. (2021). Dynamic spillovers and dependencies between iron ore prices, industry bond yields, and steel prices. Resources Policy, 74, 102430. https://doi.org/10.1016/j.resourpol.2021.102430
Malanichev, A. G. & Vorobyev, P. V. (2011). Forecast of global steel prices. Studies on Russian Economic Development, 3, 304 – 311. DOI:10.1134/S1075700711030105
Ministry of Energy. (2023). Monthly report of water and electricity industry statistics. Deputy Research and Human Resources, Tehran, (In Persian), Available: https://isn.moe.gov.ir/
Mohammadi, A. Soltani, S. & Bakhshandeh, H. (2012). Iron ore price forecasting using a time series model. International Conference on Mining Engineering, Metallurgy and Environment, Zanjan, 88-92, (In Persian). https://www.magiran.com/paper/1234314/
Pesaran, M. H., & Shin, Y. (1998), Impulse Response Analysis in Linear Multivariate Models, Economics Letters, 58: 17-29. https://doi.org/10.1016/S0165-1765(97)00214-0
Ratti, R. A., & Vespignani, J. L. (2016). Oil prices and global factor macroeconomic variables. Energy Economics, 59, 198-212. https://doi.org/10.1016/j.eneco.2016.06.002
Sanchez F, Javier F, Suarez A, Krzemien A, & Riesgo P. (2015). Forecasting the COMEX cooper spot price using neural networks and ARIMA models. Resources Policy. Vol. 45. 37-43. https://doi.org/10.1016/j.resourpol.2015.03.004
Sari, R., Hammoudeh, S., & Soytas, U. (2010). Dynamics of oil price, precious metal prices, and exchange rate. Energy Economics, 32(2), 351-362. https://doi.org/10.1016/j.eneco.2009.08.010
Shafiei, A. & Mirabi, V. R. (2020). Design and validation of financing models in large companies of the steel industry. Financial Economics, 14(51), 83-114. (In Persian). DOI: 20.1001.1.25383833.1399.14.51.4.2
Shahzad, S. J. H., Rehman, M. U., & Jammazi, R. (2019). Spillovers from oil to precious metals: quantile approaches. Resources Policy, 61, 508-521. https://doi.org/10.1016/j.resourpol.2018.05.002
Shao, L., & Zhang, H. (2020). The impact of oil price on the clean energy metal prices: A multi-scale perspective. Resources Policy, 68, 101730. https://doi.org/10.1016/j.resourpol.2020.101730
Sims, C. (1980), Macroeconomics and Reality, Econometrica, 48: 1-48. https://doi.org/10.2307/1912017
Singhal, S., Choudhary, S., & Biswal, P. C. (2019). Return and volatility linkages among International crude oil price, gold price, exchange rate, and stock markets: Evidence from Mexico. Resources Policy, 60, 255-261. https://doi.org/10.1016/j.resourpol.2019.01.004
Soltani Tehrani, E. & Daie Karimzadeh, S. (2015). Steel price forecasting using a time series model. International Conference on Management and Economics in the 21st Century, (In Persian). https://scholar.conference.ac:443/index.php/download/file/2932-Steel-price-forecasting-using-time-series-model
Statistical Centre of Iran. (2023). Definitions and Concepts, Industrial producer price index, Tehran, (In Persian), Available: https://www.amar.org.ir/
Statistical Centre of Iran. (2023). Industrial producer price index, Tehran. (In Persian). Available: https://www.amar.org.ir/
Varangis, Panos, Cuncan, Ronald C. (1990). The Response of Japanese and U.S. Steel Prices to Changes in the Yen-Dollar Exchange Rate. Policy, Research, and External Affairs, working Papers: WPS 367, The World Bank. https://ideas.repec.org/p/wbk/wbrwps/367.html
Wen, F., Xiao, Y., & Wu, H. (2019). The effects of foreign uncertainty shocks on China’s macro-economy: Empirical evidence from a nonlinear ARDL model. Physica A: Statistical Mechanics and its Applications, 532, 121879. https://doi.org/10.1016/j.physa.2019.121879
Windapo, A. & Cattell, K. (2012). Examining the trends in building material prices: built environment stakeholders’ perspectives. Manage Construct Res Pract, 1, 187-201. https://www.irbnet.de/daten/iconda/CIB_DC25658.pdf
World Steel Association. (2023). Available: https://worldsteel.org/
Xu, X. & Zhang, Y. (2023). Price Forecasts of Ten Steel Products Using Gaussian Process Regressions. Engineering Applications of Artificial Intelligence, 126, Part A, 106870. https://doi.org/10.1016/j.engappai.2023.106870
Yaya, O. S., Ogbonna, A. E., Adesina, O. A., Alobaloke, K. A., & Vo, X. V. (2022). Time-variation between metal commodities and oil, and the impact of oil shocks: GARCH-MIDAS and DCC-MIDAS analyses. Resources Policy, 79, 103036. https://doi.org/10.1016/j.resourpol.2022.103036
Yin, L., & Ma, X. (2018). Causality between oil shocks and exchange rate: a Bayesian, graph-based VAR approach. Physica A: Statistical Mechanics and its Applications, 508, 434-453. https://doi.org/10.1016/j.physa.2018.05.064
Zhang, H. Nguyen, H. Bui, X. Pradhan, B. Mai, N. & Vu, D. (2021). Proposing Two Novel Hybrid Intelligence Models for Forecasting Copper Price Based on Extreme Learning Machine and Meta-Heuristic Algorithms. Resources Policy, 73, 1-12. https://doi.org/10.1016/j.resourpol.2021.102195
Zhang, H., Zhu, X., Guo, Y., & Liu, H. (2018). A separate reduced‐form volatility forecasting model for the nonferrous metal market: Evidence from copper and aluminum. Journal of Forecasting, 37(7), 754-766. https://doi.org/10.1002/for.2523
Zhu, X., Zheng, W., Zhang, H., & Guo, Y. (2019). Time-varying international market power for the Chinese iron ore markets. Resources Policy, 64, 101502. https://doi.org/10.1016/j.resourpol.2019.101502 | ||
آمار تعداد مشاهده مقاله: 739 تعداد دریافت فایل اصل مقاله: 437 |