
تعداد نشریات | 33 |
تعداد شمارهها | 764 |
تعداد مقالات | 7,395 |
تعداد مشاهده مقاله | 12,239,718 |
تعداد دریافت فایل اصل مقاله | 8,351,906 |
شناسایی و برآورد عملکرد مزارع برنج با استفاده از تصاویر ماهوارهای و تکنیکهای سنجشازدور (مطالعۀ موردی: استان کندز، افغانستان) | ||
مجله جغرافیا و توسعه | ||
دوره 22، شماره 74، فروردین 1403، صفحه 187-218 اصل مقاله (3.09 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22111/gdij.2024.8177 | ||
نویسندگان | ||
حمیدرضا غفاریان مالمیری* 1؛ محمدعارف صابری2؛ غلامعلی مظفری3؛ فهیمه عربی علی آباد4 | ||
1دانشیار گروه جغرافیا، دانشگاه یزد، یزد، ایران | ||
2کارشناس ارشد سنجش از دور و GIS، گروه جغرافیا، دانشگاه یزد، یزد، ایران | ||
3استاد گروه جغرافیا، دانشگاه یزد، یزد، ایران | ||
4دکتری مدیریت مناطق خشک و بیابانی، دانشگاه یزد، یزد، ایران | ||
چکیده | ||
بررسی سطح زیر کشت و برآورد میزان تولید محصولات کشاورزی، ازجمله برنج، تا حد زیادی میتواند باعث تأمین امنیت غذایی، تحلیل وضعیت محصولات کشاورزی و درنتیجه توسعۀ پایدار کشورهای درحالتوسعه شود. در این پژوهش، با استفاده از تصاویر ماهوارۀ سنتینل-2، به برآورد سطح زیرکشت و عملکرد برنج در استان کندز، کشور افغانستان در سال زراعی 2020 پرداخته شد. با بهکارگیری سری زمانی شاخص NDVI، مراحل فنولوژی گیاه برنج بهدست آمد و پارامترهای فنولوژی (SoS و EoS) با استفاده از روش حداکثر تفکیک استخراج شد. سپس برای شناسایی و تعیین سطح زیرکشت مزارع برنج از روش طبقهبندی شیءگرای مبتنیبر فنولوژی استفاده شد. در این روش از سه نوع دادۀ میزان بازتابش باندهای انعکاسی، شاخص پوشش گیاهی NDVI و پارامترهای فنولوژی بهعنوان دادههای کمکی استفاده شد. برآورد عملکرد با استفاده از روش تجربی تحلیل رگرسیون بین شاخصهای گیاهی سنجشازدوری (مانند: NDVI و LAI) و دادههای حاصل از برداشت زمینی انجام گرفت. برای ارزیابی صحت طبقهبندی و میزان عملکرد برآوردشده، از دادههای مرجع، مانند نقاط برداشت میدانی و نقشههای پوشش اراضی سالهای قبل استفاده شد. نتایج این تحقیق نشان داد که روش طبقهبندی شیءگرای مبتنی بر فنولوژی با دقت کلی 5/91 درصد و ضریب کاپا 87/0، روش دقیقی برای شناسایی مزارع برنج به شمار میرود. همچنان روش تجربی مبتنی بر تحلیل رگرسیون دادههای زمینی و سنجشازدوری با ضریب تعیین 86/0 و ضریب همبستگی پیرسون برابر با 92/0 دقت بالای آن را در برآورد عملکرد مزارع برنج نشان داد. صحت عملکرد برآوردشده در این پژوهش با مقایسۀ عملکرد واقعی (دادههای برداشت میدانی) در 27 نقطۀ کنترلی ارزیابی شد. برای این کار از آزمون همبستگی پیرسون استفاده شد. این آزمون نشان داد بین عملکرد واقعی و عملکرد برآوردشده رابطۀ مثبت و بسیار قوی وجود دارد (000/0=P، 27=N و 929/0=R2). | ||
کلیدواژهها | ||
سنتینل2؛ طبقهبندی شیءگرا؛ فنولوژی؛ تحلیل رگرسیون؛ شاخصهای گیاهی | ||
مراجع | ||
نجمی، حمزه (۱۳۹۱). تهیه نقشه میزان تولید محصول برنج با استفاده از دادهای سنجشازدور راداری، دانشگاه خواجه نصیرالدین طوسی. دانشکده مهندسی نقشهبرداری. پایاننامه کارشناسی ارشد. وزارت زراعت، آبیاری و مالداری (۱۳۹۸ الف). گزارش سالانه زراعتی سال ۱۳۹۸. https://www.mail.gov.af/sites/default/files/2019-12/Rice%20Report%2007.pdf وزارت زراعت، آبیاری و مالداری (۱۳۹۸ب). گزارش تولیدات برنج سال ۱۳۹۸. https://www.mail.gov.af/sites/default/files/2020-08/Agricultural%20Annual%20Report%2098.pdf Ali, A. M., Savin, I., Poddubskiy, A., Abouelghar, M., Saleh, N., Abutaleb, K., ... & Dokukin, P (2021). Integrated method for rice cultivation monitoring using Sentinel-2 data and Leaf Area Index. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 431-441. https://www.sciencedirect.com/science/article/pii/S1110982320301666 Arham, N. A (2020). Object based image analysis of support vector machine and rule based image classification for building extraction (Doctoral dissertation, Universiti Teknologi MARA, Shah Alam). https://ir.uitm.edu.my/id/eprint/34565/1/34565.pdf Aschbacher, J., Pongsrihadulchai, A., Karnchanasutham, S., Rodprom, C., Paudyal, D. R., & Le Toan, T (1995, July). Assessment of ERS-1 SAR data for rice crop mapping and monitoring. In 1995 International Geoscience and Remote Sensing Symposium, IGARSS'95. Quantitative Remote Sensing for Science and Applications (Vol. 3, 2183-2185). IEEE. https://ieeexplore.ieee.org/document/524142?arnumber=524142 Baatz, M., & Schäpe, A (2000). Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. Proceedings of Angewandte Geographische Informationsverarbeitung XII, 12-23. Bach, H (1998). Yield estimation of corn based on multitemporal LANDSAT-TM data as input for an agrometeorological model. Pure and Applied Optics: Journal of the European Optical Society Part A, 7(4), 809. https://iopscience.iop.org/article/10.1088/0963-9659/7/4/017 Baidar, T (2020). Rice crop classification and yield estimation using multi-temporal sentinel-2 data: a case study of terai districts of Nepal. Universitat Jaume. 1–79. https://repositori.uji.es/xmlui/handle/10234/187006?locale-attribute=en Benz, U., & Schreier, G (2001). Definiens Imaging GmbH: Object oriented classification and feature detection. IEEE Geoscience and Remote Sensing Society Newsletter, 9, 16-20. Blaschke, T (2010). Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing, 65(1), 2-16. https://www.sciencedirect.com/science/article/pii/S0924271609000884 Blaschke, T., & Strobl, J (2001). What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. Zeitschrift für Geoinformationssysteme, 12-17. Boegh, E., Soegaard, H., Broge, N., Hasager, C. B., Jensen, N. O., Schelde, K., & Thomsen, A (2002). Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote sensing of Environment, 81(2-3), 179-193. https://www.sciencedirect.com/science/article/abs/pii/S003442570100342X?via%3Dihub Boori, M. S., Choudhary, K., Paringer, R., Sharma, A. K., Kupriyanov, A., & Corgne, S (2019, September). Monitoring crop phenology using NDVI time series from Sentinel 2 satellite data. In 2019 5th International Conference on Frontiers of Signal Processing (ICFSP) (62-66). IEEE. https://ieeexplore.ieee.org/document/8938078 Cai, Y., Lin, H., & Zhang, M (2019). Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data. Advances in Space Research, 64(11), 2233–2244. https://www.sciencedirect.com/science/article/abs/pii/S0273117719306258 Chen, C., & McNairn, H (2006). A neural network integrated approach for rice crop monitoring. International Journal of Remote Sensing, 27(7), 1367-1393. https://www.tandfonline.com/doi/full/10.1080/01431160500421507 Chen, N., Yu, L., Zhang, X., Shen, Y., Zeng, L., Hu, Q., & Niyogi, D (2020). Mapping paddy rice fields by combining multi-temporal vegetation index and synthetic aperture radar remote sensing data using Google Earth Engine machine learning platform. Remote Sensing, 12(18). https://www.mdpi.com/2072-4292/12/18/2992 Deering, D. W (1975). Measuring" forage production" of grazing units from Landsat MSS data. In Proceedings of the Tenth International Symposium of Remote Sensing of the Envrionment (1169-1198). dela Torre, D. M. G., Gao, J., Macinnis-Ng, C., & Shi, Y. (2021). Phenology-based delineation of irrigated and rain-fed paddy fields with Sentinel-2 imagery in Google Earth Engine. Geo-spatial Information Science, 24(4), 695-710. Desclée, B., Bogaert, P., & Defourny, P (2006). Forest change detection by statistical object-based method. Remote Sensing of Environment, 102(1-2), 1-11. https://www.sciencedirect.com/science/article/abs/pii/S0034425706000344 Dong, J., & Xiao, X (2016). Evolution of regional to global paddy rice mapping methods: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 119, 214-227. https://www.sciencedirect.com/science/article/abs/pii/S0924271616300995 Dong, J., Xiao, X., Kou, W., Qin, Y., Zhang, G., Li, L., Jin, C., Zhou, Y., Wang, J., Biradar, C., Liu, J., & Moore, B (2015). Tracking the dynamics of paddy rice planting area in 1986-2010 through time series Landsat images and phenology-based algorithms. Remote Sensing of Environment, 160, 99-113. https://www.sciencedirect.com/science/article/abs/pii/S0034425715000139 FAO (2017) Afghanistan: Monitoring of Rice Crop using Satellite Remote Sensing and GIS Technologies. FAO Publication: Rome. https://www.fao.org/geospatial/resources/detail/zh/c/1024575/ FAO (2022) Crop Prospects and Food Situation-Quarterly Global Report No. 2, July 2022. Rome. https://www.fao.org/documents/card/en/c/cc0868en/ Frohn, R. C., & Hao, Y (2006). Landscape metric performance in analyzing two decades of deforestation in the Amazon Basin of Rondonia, Brazil. Remote sensing of Environment, 100(2), 237-251. https://www.sciencedirect.com/science/article/abs/pii/S0034425705003573 Guan, K., Li, Z., Rao, L. N., Gao, F., Xie, D., Hien, N. T., & Zeng, Z (2018). Mapping paddy rice area and yields over Thai Binh Province in Viet Nam from MODIS, Landsat, and ALOS-2/PALSAR-2. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(7), 2238-2252. https://ieeexplore.ieee.org/document/8375090 Huete, A. R., Liu, H. Q., Batchily, K. V., & Van Leeuwen, W. J. D. A (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote sensing of environment, 59(3), 440-451. https://www.sciencedirect.com/science/article/abs/pii/S0034425796001125 Lestari, E. A. P., Supriatna, & Damayanti, A (2020). Model of paddy rice phenology using Sentinel 2-A imagery with NDVI algorithm in Subang Regency. IOP Conference Series: Earth and Environmental Science, 481(1). https://iopscience.iop.org/article/10.1088/1755-1315/481/1/012069 Maki, M., & Homma, K (2014). Empirical regression models for estimating multiyear leaf area index of rice from several vegetation indices at the field scale. Remote Sensing, 6(6), 4764-4779. https://www.mdpi.com/2072-4292/6/6/4764 Menenti, M., Azzali, S., Verhoef, W., and van Swol, R (1993). Mapping agroecological zones and time lag in vegetation growth by means of fourier analysis of time series of NDVI images. Adv. Space Res. 13, 233-237. https://www.sciencedirect.com/science/article/abs/pii/027311779390550U Noureldin, N. A., Aboelghar, M. A., Saudy, H. S., & Ali, A. M (2013). Rice yield forecasting models using satellite imagery in Egypt. The Egyptian Journal of Remote Sensing and Space Science, 16(1), 125-131. https://www.sciencedirect.com/science/article/pii/S1110982313000094 Prasad, A.K.; Chai, L.; Singh, R.P.; Kafatos, M (2006). Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied earth observation and geoinformation, 8: 26-33. https://www.sciencedirect.com/science/article/abs/pii/S0303243405000553 Prasetyo, Y., Sukmono, A., Aziz, K. W., & Aji, B. J. P. S (2018, June). Rice productivity prediction model design based on linear regression of spectral value using NDVI and LSWI combination on landsat-8 imagery. In IOP Conference Series: Earth and Environmental Science (Vol. 165, No. 1, 012002). IOP Publishing. https://iopscience.iop.org/article/10.1088/1755-1315/165/1/012002 Pringle, M. J., Denham, R. J., & Devadas, R (2012). Identification of cropping activity in central and southern Queensland, Australia, with the aid of MODIS MOD13Q1 imagery. International Journal of Applied Earth Observation and Geoinformation, 19(1), 276-285. https://www.sciencedirect.com/science/article/abs/pii/S0303243412001250 Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L (2014). Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sensing, 7(1), 153-168. https://www.mdpi.com/2072-4292/7/1/153 Qiu, B., Li, W., Tang, Z., Chen, C., & Qi, W (2015). Mapping paddy rice areas based on vegetation phenology and surface moisture conditions. Ecological Indicators, 56, 79–86. https://www.sciencedirect.com/science/article/abs/pii/S1470160X15001697 Raksapatcharawong, M., Veerakachen, W., Homma, K., Maki, M., & Oki, K (2020). Satellite-based drought impact assessment on rice yield in Thailand with SIMRIW− RS. Remote Sensing, 12(13), 2099. https://www.mdpi.com/2072-4292/12/13/2099 Rasmussen, M. S (1997). Operational yield forecast using AVHRR NDVI data: reduction of environmental and inter-annual variability. International Journal of Remote Sensing, 18(5), 1059-1077. https://www.tandfonline.com/doi/abs/10.1080/014311697218575 Raza, S. M. H., Mahmood, S. A., Gillani, S. A., Hassan, S. S., Aamir, M., Saifullah, M., ... & Ali, T (2019). Estimation of net rice production by remote sensing and multi source datasets. Sarhad Journal of Agriculture, 35(3), 955-965. Sibaruddin, H. I., Shafri, H. Z. M., Pradhan, B., & Haron, N. A (2018, June). Comparison of pixel-based and object-based image classification techniques in extracting information from UAV imagery data. In IOP conference series: earth and environmental science (Vol. 169, No. 1, p. 012098). IOP Publishing. https://iopscience.iop.org/article/10.1088/1755-1315/169/1/012098 Singha, M., Wu, B., & Zhang, M (2016). Object-based paddy rice mapping using HJ-1A/B data and temporal features extracted from time series MODIS NDVI data. Sensors, 17(1), 10. https://www.mdpi.com/1424-8220/17/1/10 Sisheber, B., Marshall, M., Ayalew, D., & Nelson, A (2022). Tracking crop phenology in a highly dynamic landscape with knowledge-based Landsat–MODIS data fusion. International Journal of Applied Earth Observation and Geoinformation, 106, 102670. https://www.sciencedirect.com/science/article/pii/S0303243421003779 Son, N. T., Chen, C. F., Chen, C. R., Guo, H. Y., Cheng, Y. S., Chen, S. L., ... & Chen, S. H (2020). Machine learning approaches for rice crop yield predictions using time-series satellite data in Taiwan. International Journal of Remote Sensing, 41(20), 7868-7888. https://www.tandfonline.com/doi/abs/10.1080/01431161.2020.1766148 Son, N. T., Chen, C. F., Chen, C. R., Toscano, P., Cheng, Y. S., Guo, H. Y., & Syu, C. H (2021). A phenological object-based approach for rice crop classification using time-series Sentinel-1 Synthetic Aperture Radar (SAR) data in Taiwan. International Journal of Remote Sensing, 42(7), 2722-2739. https://www.tandfonline.com/doi/abs/10.1080/01431161.2020.1862440 Su, T (2017). Efficient paddy field mapping using Landsat-8 imagery and object-based image analysis based on advanced fractel net evolution approach. GIScience & Remote Sensing, 54(3), 354-380. https://www.tandfonline.com/doi/full/10.1080/15481603.2016.1273438 Teluguntla, P., Ryu, D., George, B., Walker, J. P., & Malano, H. M (2015). Mapping flooded rice paddies using time series of MODIS imagery in the Krishna River Basin, India. Remote Sensing, 7(7), 8858–8882. https://www.mdpi.com/2072-4292/7/7/8858 Trimble (2014). eCognition Developer 9.0. 1 Reference Book. https://ecognition-developer.software.informer.com/9.0/ Tzotso, A (2006). A support vector machine approach for object based image analysis. Proceedings of OBIA. https://www.academia.edu/3098178/ Wiegand, C. L., Richardson, A. J., Escobar, D. E., & Gerbermann, A. H (1991). Vegetation indices in crop assessments. Remote sensing of Environment, 35(2-3), 105-119. https://www.sciencedirect.com/science/article/abs/pii/003442579190004P Xiao, W., Xu, S., & He, T (2021). Mapping paddy rice with sentinel-1/2 and phenology-, object-based algorithm-A implementation in Hangjiahu plain in China using gee platform. Remote Sensing, 13(5), 990. https://www.mdpi.com/2072-4292/13/5/990 Xiao, X., Boles, S., Frolking, S., Salas, W., Moore, I., Li, C., He, L., & Zhao, R (2002). Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data. International Journal of Remote Sensing, 23(15), 3009-3022. https://www.tandfonline.com/doi/abs/10.1080/01431160110107734 Xiao, Xiangming, Boles, S., Frolking, S., Li, C., Babu, J. Y., Salas, W., & Moore, B (2006). Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sensing of Environment, 100(1), 95-113. https://www.tandfonline.com/doi/citedby/10.1080/01431160110107734?scroll=top&needAccess=true Xiao, Xiangming, Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., Salas, W., & Moore, B (2005). Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment, 95(4), 480–492. https://www.sciencedirect.com/science/article/abs/pii/S0034425705000209 Yan, L., & Roy, D. P (2015). Improved time series land cover classification by missing-observation-adaptive nonlinear dimensionality reduction. Remote Sensing of Environment, 158, 478-491. https://www.sciencedirect.com/science/article/pii/S0034425714004763 Yang, S., Shen, S., Li, B., Le Toan, T., & He, W (2008). Rice mapping and monitoring using ENVISAT ASAR data. IEEE Geoscience and Remote Sensing Letters, 5(1), 108-112. https://ieeexplore.ieee.org/document/4432591 You, J., Li, X., Low, M., Lobell, D., & Ermon, S (2017). Deep Gaussian process for crop yield prediction based on remote sensing data. 31st AAAI Conference on Artificial Intelligence, AAAI 2017, 4559-4565. https://ojs.aaai.org/index.php/AAAI/article/view/11172 Zhang, G., Xiao, X., Dong, J., Kou, W., Jin, C., Qin, Y., Zhou, Y., Wang, J., Menarguez, M. A., & Biradar, C (2015). Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. ISPRS Journal of Photogrammetry and Remote Sensing, 106, 157-171. https://www.sciencedirect.com/science/article/abs/pii/S0924271615001483 Zhang, M., & Lin, H (2019). Object-based rice mapping using time-series and phenological data. Advances in Space Research, 63(1), 190-202. https://www.sciencedirect.com/science/article/abs/pii/S0273117718307142 Zhao, R., Li, Y., & Ma, M (2021). Mapping paddy rice with satellite remote sensing:a review. Sustainability, 13(2), 503. | ||
آمار تعداد مشاهده مقاله: 441 تعداد دریافت فایل اصل مقاله: 373 |