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Abstract

In this paper, a new approach based on fuzzy systems is used for solving variable-order fractional delay differential
algebraic equations. The fractional derivatives are considered in the Atangana-Baleanu sense that is a new derivative
with the non-singular and non-local kernel. By relying on the ability of fuzzy systems in function approximation,
the fuzzy solutions of variables are substituted in variable-order fractional delay differential algebraic equations. The
obtained algebraic equations system is then transformed into an error function minimization problem. A learning
algorithm is used to achieve the adjustable parameters of fuzzy solutions. It is shown that the variable-order fractional
delay optimal control problems can be reformulated as variable-order fractional delay differential algebraic equations
and solved by the proposed method. The efficiency and accuracy of the presented approach are assessed through some
illustrative examples of the variable-order fractional delay differential algebraic equations.

Keywords: Variable-order fractional delay differential algebraic equations, Atangana-Baleanu derivative, fuzzy system,
optimization, variable-order fractional delay optimal control problems.

1 Introduction

Fractional calculus or the study of fractional order integral and derivative operators emerged in 1695 with a very deep
question raised in a letter of L’Hospital to Leibniz. For a long time, due to the existence of multiple nonequivalent
definitions of fractional derivatives and their nonlocal character, fractional calculus was not been considered by re-
searchers. However, in recent decades, fractional calculus has been used as a powerful tool in many branches of science
and engineering, such as physics, economics, chemistry, signal and image processing, biology, and control theory [34, 36].
Fractional differential equations (FDEs) provide an exact description of different nonlinear phenomena and inherent
relation to various materials and processes with memory, hence, fractional order modeling of many real phenomena has
more advantages and consistency rather than classical integer-order mathematical modeling. More details regarding
the theory and applications of fractional calculus can find in [8].

Although the FDEs are capable of addressing some very relevant physical problems, it cannot exactly describe
important classes of physical phenomena where the order itself is a function of either dependent or independent variables.
So it is significant to develop the concept of variable-order calculus. Variable-order fractional operators are an extension
of constant-order fractional operators the order can vary continuously as a function of time, space or an independent
external variable. Since the kernel of the variable-order operators has a variable exponent, obtaining analytical solutions
of variable-order fractional differential equations (V-OFDEs) is difficult. Therefore, numerical solutions have become
the key to solving V-OFDEs. Recently, researchers have presented some numerical methods for solving V-OFDEs. For
instance, one can refer to numerical methods based on Legendre wavelets functions [7, 11], finite difference schemes in
[6, 33, 40], methods based on the fundamental theorem of fractional calculus and the two-step Lagrange polynomial in
[32], method of approximate particular solutions in [12], the method based on cubic spline interpolation [42], simplified
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reproducing kernel method in [17], reproducing kernel methods in [19, 20], optimization method based on generalized
polynomials in [9] and characteristic finite difference method [30].

Numerical methods based on Artificial Intelligence have attracted the attention of researchers because of their unique
merits in the ability to approximate complicated nonlinear functions with simple models. The primary advantage of
these methods is that the obtained solutions are differentiable and in closed analytic form. Fuzzy systems are a
category of artificial intelligence tools. Fuzzy systems can provide a more transparent representation of the studied
system, compared with the others Artificial Intelligence methods such as artificial neural networks. The existence of
this merit in fuzzy systems is due to the possible linguistic interpretation in the form of rules. These techniques have
universal approximation capabilities, hence, they have been used for a wide variety of applications (see [5, 10, 23, 24,
25, 26, 27, 29, 39, 41, 43]).

Fractional differential-algebraic equations (FDAEs) are composed of fractional differential equations and algebraic
equations. Many important mathematical models can be expressed in terms of a system of differential-algebraic equa-
tions with fractional order [4, 31, 37]. This kind of mathematical model has received much attention; nevertheless, the
numerical methods in this field are still young; a few studies have been considered on the numerical methods for solving
FDAEs. For example, Numerical Methods based on Said Ball Curve [15], Chebyshev Pseudo spectral [1], Sliding Mode
Control [35], homotopy analysis [44], Generalized JacobiGalerkin [13] and Bezier curves [14].

Fractional delay differential-algebraic equations (FDDAEs) are a category of FDAEs that include one or multiple
delays in the variable or in its derivative. FDDAEs are more accurate in describing some scientific and engineering
problems with memory function and algebraic restrictions. Since the concept of FDDAEs is a new subject in math-
ematics, the number of existing approaches to solve them is limited [21]. As the generalized form of FDDAEs, the
variable-order fractional delay differential algebraic equations (V-OFDDAEs) means the delay differential algebraic
equations with variable-order fractional derivatives. To the best of our knowledge, there has been no research focusing
on V-OFDDAEs, until now.

Motivated by the above mentioned discussions, the main objective of this paper is to present an efficient fuzzy system
for solving V-OFDDAEs with Atangana-Baleanu (AB) derivative. by relying on the functional approximation capability
of the fuzzy systems via fuzzy interpolation scheme, the fuzzy solutions of variables are substituted in V-OFDDAEs.
This substituting lead to reducing the V-OFDADEs to a simpler problem that consists of solving a system of algebraic
equations. Finally, the parameters of the fuzzy system are adjusted to minimize an appropriate error function via a
learning algorithm. Also, it is shown that variable-order fractional delay optimal control problem (V-OFDOCP) can be
reformulated as Hamiltonian V-OFDDAE. The derived V-OFDDAE can then be solved by the proposed fuzzy system.
Here, the contributions of this paper are briefly mentioned as follows:

• A novel concept of FDAEs is introduced by using the concept of variable-order fractional derivatives in the
Atangana-Baleanu type.

• There is not any report about solving this problem.

• A new formulation of V-OFDOCPs with AB derivative is proposed.

• To solve the new problem, a computational method based on the fuzzy system is proposed, which has not been
investigated in the literature, to the best of our knowledge.

• An upper error bound between the exact solution and the proposed fuzzy solution with respect to the number of
fuzzy rules and solution errors is obtained.

• The convergence of the proposed fuzzy system is proved.

The outline of this paper is as follows. Some fundamental concepts regarding fractional order calculus are described
in Section 2. In Section 3, a brief introduction to the fuzzy system approach is provided. Next, a new method based
on the fuzzy system is utilized to achieve the solution of V-OFDDAEs. A learning optimization algorithm to adjust
the parameters of the fuzzy system is then presented in Section 4. In Section 5, it is shown that the V-OFDOCP can
be rewritten as a V-OFDDAE. The usefulness of the proposed method is illustrated by providing several numerical
examples in Section 6. Finally, a conclusion is given in Section 7.

2 Fractional calculus

In 1993 , Ross and Samko introduced operators that the order is not a constant during the process, but variable on time.
By developing variable-order fractional calculus theory, many new definitions are proposed. Here, the Atangana-Baleanu
type definition of the variable-order fractional derivative is given which is used in this paper.
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Definition 2.1. [2] Let f be a function such that f ∈ H1(0, T ), T > 0, α(t) ∈ (0, 1) and M(α(t)) be a normalization
function with M(0) =M(1) = 1. The definition of the left Atangana-Baleanu (AB) fractional derivative in the Caputo
sense is given as

ABC
0 D

α(t)
t f(t) =

M(α(t))

1− α(t)

∫ t

0

Eα(t)(−
α(t)

1− α(t)
(t− τ)α(t))ḟ(τ)dτ, (1)

and in the Riemann-Liouville sense is defined by

ABR
0 D

α(t)
t f(t) =

M(α(t))

1− α(t)

d

dt

∫ t

0

Eα(t)(−
α(t)

1− α(t)
(t− τ)α(t))f(τ)dτ, (2)

where Eα denotes the generalized Mittag-Leffler function

Eα =

∞∑
k=1

tk

Γ(αk + 1)
.

Definition 2.2. [2] The definition of the right AB fractional derivative in the Caputo sense is given as

ABC
t D

α(t)
T f(t) = −M(α(t))

1− α(t)

∫ T

t

Eα(t)(−
α(t)

1− α(t)
(τ − t)α(t))ḟ(τ)dτ, (3)

and in the Riemann-Liouville sense is defined by

ABR
t D

α(t)
T f(t) = −M(α(t))

1− α(t)

d

dt

∫ T

t

Eα(t)(−
α(t)

1− α(t)
(τ − t)α(t))f(τ)dτ. (4)

The relations between the left and right AB fractional derivatives in the Riemann-Liouville sense and the Caputo
sense are defined as follows

ABC
0 D

α(t)
t f(t) = ABR

0 D
α(t)
t f(t)− M(α(t))

1− α(t)
f(0)Eα(t)(−

α(t)

1− α(t)
tα(t)), (5)

ABC
t D

α(t)
T f(t) = ABR

t D
α(t)
T f(t)− M(α(t))

1− α(t)
f(T )Eα(t)(−

α(t)

1− α(t)
(T − t)α(t)). (6)

The following definition provides the formula of integration by parts for AB fractional derivatives that is essential
for proving results concerning variational problems.

Definition 2.3. [2] Suppose that f ∈ H1(0, T ), T > 0, and α(t) ∈ (0, 1). Then∫ T

0

ABC
0 D

α(t)
t f(t)g(t)dt =

∫ T

0

f(t)ABR
t D

α(t)
T g(t)dt+

M(α(t))

1− α(t)
f(t)(e1

α(t),1,
−α(t)
1−α(t)

,T
− g)(t)|T0 ,

where (eγρ,µ,ω,b − φ)(x) =
∫ b

x
(t− x)µ−1Eγ

ρ,µ[ω(t− x)ρ]φ(t)dt, x < b, and Eγ
ρ,µ(z) =

∑∞
k=0

(γ)kz
k

Γ(ρk + µ)k!
.

In this paper, the FDDAE is generalized by replacing the classical derivative by the Atangana-Baleanu variable-order
fractional derivative. These systems can be presented by the following formula

EABC
0 D

α(t)
t x(t) = Ax(t) + Bx(t− τ) + F(t), 0 < t ≤ T, (7)

x(t) = ϕ(t), −τ ≤ t ≤ 0, (8)

where E,A,B ∈ Rn,n, det(E) = 0, F : [0, T ] → Rn and τ ∈ R+n
is a vector of constant delay.

3 Fuzzy system approach

A fuzzy system consists of four principal parts whose basic configuration is depicted in Figure 1,

a) a fuzzzifier, which is a map from crisp points into fuzzy sets in the input space,
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b) fuzzy rule base, a set of fuzzy rules that perform the fuzzy system. The fuzzy rules have the following form:{
Rj (jth rule) : If x1 is Aj

1 and x2 is Aj
2 and · · · and xn is Aj

n,

Then z is Bj ,
(9)

where n is the number of input variables, xi, (i = 1, · · · , n) and z are the input and output variables, respectively
and Aj

i and B
j are linguistic terms characterized by fuzzy membership functions µAj

i
(xi) and µBj (z), respectively,

c) inference engine, which determines a mapping based on fuzzy logic operations on fuzzy rule base,

d) a defuzzifier, which is a map from fuzzy sets into crisp points in the output space.

Figure 1: Basic configuration of fuzzy systems.

A subset of the fuzzy systems of Figure 1 with singleton fuzzifier, product inference, centroid defuzzifier, and
Gaussian membership function consists of all functions of the form

f(x) =

∑m
j=1 cj(

∏n
i=1 µAj

i
(xi))∑m

j=1(
∏n

i=1 µAj
i
(xi))

, (10)

where f : U ⊂ Rn −→ R, x = (x1, x2, . . . , xn) ∈ U , µAj
i
(xi) is a Gaussian membership function and m is the number of

fuzzy rules.
Wang and Mendel in [38] proved that fuzzy systems (10) can uniformly approximate any nonlinear continuous

function under a compact set to any degree of accuracy. This property can be stated by means of the following
theorem:

Theorem 3.1. (Universal Approximation Theorem) [38] For any given real continuous g(x) on the compact set U ⊂ Rn

and arbitrary ε > 0, there exists f(x) ∈ Y (Y is the set of all the functions (10)) such that

sup
x∈U

|f(x)− g(x)| < ε. (11)

In this paper we consider a fuzzy system with an input variable t ∈ [0, T ] and output variable f(t) ∈ R which can
be implemented by the following function:

f(t) =

m∑
i=1

ci
µi∑m
i=1 µi

= CTΨ, (12)

where C = [c1, c2, . . . , cm]T, Ψ = [ψ1, ψ2, . . . , ψm]T, ψi =
µi∑m
i=1 µi

and µi (i = 1, 2, . . . ,m) are Gaussian membership

functions in the following form:

µi = exp(−1

2
(
t− ai
σi

)2), (13)

where ai and σi are the mean values and the standard deviations of the membership distributions, respectively. These
parameters are assigned as follows:

ai = (i− 1)
T

m− 1
, (14)

σi =
T

m− 1
, (15)

where m > 1 is the numbers of fuzzy rules.
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Remark 3.1. The Gaussian function is a nonlinear function in C∞. Hence this makes the approximate solution (7)-(8)
smooth, continuous and differentiable in C∞ in order to save the properties of the exact solution.

Remark 3.2. From (15) , it is easy to find out that the standard deviations σi will be forced to be zero with infinite
numbers of membership functions, i.e., limm→∞ σi = 0. Therefore, when m approaches to ∞ membership function in
(13) degenerate into the singleton case from the Gaussian case.

Based on Theorem 3.1, it is proved that any continuous function g(t) ∈ [0, T ] can be approximated by the proposed
fuzzy system f(t) with a sufficient number of fuzzy rules. In the following, an upper bound error is derived for this
approximation. Next the convergent property for the case m→ ∞, i.e., all points t in the domain [0, T ] are considered,
is discussed.

Theorem 3.2. Assume that g(t) is a continuously differentiable function and there exists a set of parameters ci = g(ti)
as m→ ∞. Then

I) |g(t)−f(t)| ≤ 0.83452gs∆t+maxi |ei|, where ∆t =
T

m− 1
, ei = g(ti)−ci is error factor and gs = supt∈[0,T ] |

dg(t)

dt
|.

II) limm→∞ f(t) = g(t).

Proof. I) We have

|g(t)− f(t)| = |g(t)−
m∑
i=1

ci
µi∑m
i=1 µi

| = |
m∑
i=1

(g(t)− ci)
µi∑m
i=1 µi

| ≤
m∑
i=1

|(g(t)− ci)|
µi∑m
i=1 µi

. (16)

On the other hand

|g(t)− ci| = |g(t)− g(ti) + g(ti)− ci| = |g(t)− g(ti) + ei| ≤ |g(t)− g(ti)|+ |ei|.

From the mean value theorem, we have the following result

|g(t)− ci| ≤
∣∣∣∣dg(t)dt

|t̂i(t− ti)

∣∣∣∣+ |ei| ≤
∣∣∣∣dg(t)dt

|t̂i

∣∣∣∣ |(t− ti)|+ |ei| ≤ gs|(t− ti)|+ |ei|, (17)

where t̂i are some values between t and ti. By substituting (17) into (16), the following equation can be obtained:

|g(t)− f(t)| ≤
∑m

i=1 gs|(t− ti)|µi∑m
i=1 µi

+

∑m
i=1 |ei|µi∑m
i=1 µi

≤
∑m

i=1 gs|(t− ti)|µi∑m
i=1 µi

+

∑m
i=1 maxi |ei|µi∑m

i=1 µi

≤
∑m

i=1 gs|(t− ti)|µi∑m
i=1 µi

+max
i

|ei|.
(18)

The first term in the right side of (18) can be reduced to

θ := gs

∑m
i=1 |(t− ti)|µi∑m

i=1 µi
,

where

µi = exp(−1

2
(
t− ti
∆t

)2), ti = (i− 1)∆t i = 1, 2, . . . ,m.

Denote t = (j − 1)∆t, j ∈ [1,m], then

θ = gs∆t

∑m
i=1 |(j − i)| exp(−1

2
(j − i)2)∑m

i=1 exp(−
1

2
(j − i)2)

.

It can be verified numerically that for j ∈ [1,m] and m ≥ 2∑m
i=1 |(j − i)| exp(−1

2
(j − i)2)∑m

i=1 exp(−
1

2
(j − i)2)

≤ 0.83452.

Hence
θ ≤ 0.83452gs∆t. (19)

This completes the proof of I.
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II) From (I), the approximation upper bound between the exact solution and the proposed fuzzy solution can be
described by the following equation

|g(t)− f(t)| ≤ 0.83452gs∆t +max
i

|ei|. (20)

Take the limit for both sides of (20) with m approaching infinity and note the fact that gs is bound and ∆t → 0.
We have

|g(t)− lim
m→∞

f(t)| ≤ lim
m→∞

max
i

|ei|. (21)

From Remark 3.2 and (21)
|g(t)− lim

m→∞
f(t)| = 0, (22)

i.e., g(t) = limm→∞ f(t). The proof is complete.

Due to the universal approximation property of fuzzy system, the defined fuzzy system (12) can be used for approx-
imating the unknown solutions of the initial value problem (7) and (8). Hence with the help of fuzzy system (12), the
following fuzzy solution models are introduced to approximate the solutions of the V-OFDDAEs (7) as follows:

FSxd
=

m∑
i=1

cxd
i

µxd
i∑m

i=1 µ
xd
i

= CT
xd
Ψ, d = 1, 2, . . . , n. (23)

According to the initial conditions, the fuzzy solutions can be selected as:

xFSd
(Cxd

, t) = ϕ(0) + tFSxd
, d = 1, 2, . . . , n. (24)

Therefore each fuzzy solution is obtained from summation of two terms. The first term contains no adjustable parameters
and satisfies the initial conditions. The second term employs a fuzzy solution with adjustable parameters. The number
of fuzzy rules can be different for each fuzzy solution. By replacing the fuzzy solutions (24) into V-OFDDAEs (7), we
have

EABC
0 D

α(t)
t xFS(t) = AxFS(t) + BxFS(t− τ) + F(t), 0 < t ≤ T, (25)

where xFS = [xFS1
, xFS2

, . . . , xFSn
] and Υ = [Cx1

, Cx2
, . . . , Cxn

] is the vector of all adjustable parameters in fuzzy
solutions (24). We now define the following approximated error functions with the fuzzy solutions as

E(Υ, ti) =
(
AxFS(t) + BxFS(Υ, ti − τ) + F(ti)− EABC

0 D
α(t)
t xFS(Υ, ti)

)2
, i = 2, 3, ...,m,

where ti = (i − 1)∆t, i = 1, 2, ...,m, are collocation points in interval [0, T ]. In order to find the parameters of fuzzy
solutions (24), we consider the following unconstrained optimization problem

min
Υ

E(Υ) =
1

2
∥ η(Υ) ∥22, (26)

where η(Υ) = [E(Υ, t1), E(Υ, t2), . . . , E(Υ, tm)]T is the vector of the collection of error functions in ti. In this way,
the initial value problem (7)-(8) is transformed into an unconstrained minimization problem. Several optimization
algorithms have been proposed to solve an unconstrained optimization problem [3]-[18]. However, in the next section,
we state a learning algorithm to solve unconstrained optimization problem (26).

4 Learning algorithm of fuzzy system

learning the fuzzy system means to find the correct parameters of fuzzy solutions so that minimize error function E(Υ)
in (26). In unsupervised learning, it is impossible to use the backpropagation algorithm because the error at each output
is not available to the learning fuzzy system. So, standard optimization techniques must be used. One of the simplest
is the gradient descent method, the weights are initialized randomly and then, the following change rule is applied:

Υi(j + 1) = Υi(j)− κ
∂E(Υ)

∂Υi
, (27)
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Figure 2: Flowchart of the structure learning algorithm for fuzzy system.

where κ is the learning rate, j is the iteration step, Υi, i = 1, 2, . . . , nm are all adjustable parameters in fuzzy solutions
(24) and m is the number of fuzzy rules. For instance, unsupervised back propagation algorithm of the xFS1

is as

Cx1(j + 1) = Cx1(j)− κ
∂E(Υ)

∂Cx1

, (28)

Similarly, other parameters used to develop the xFSd
, d = 2, 3, . . . , n are optimized using (28). The flowchart of the

structure learning algorithm for fuzzy system is shown in Figure 2. In the following steps, the learning algorithm is
described.

Step 1: Randomly select the initial values of fuzzy solutions parameters Υi, i = 1, 2, . . . , nm and select an error tolerance
parameter ε > 0 and an iteration L.

Step 2: Initialize the input vector t = (t1, t2, . . . , tm).

Step 3: Compute the output values of xFSd
, d = 1, 2, . . . , n.

Step 4: Calculate the error function E(Υ) using (26).

Step 5: Update the parameters using unsupervised back propagation algorithm (27).

Step 6: If the error function E(Υ) ≤ ε or iterations > L, then go to step 7 otherwise go to step 2.

Step 7: After completing the learning algorithm, the final parameters are stored and then the converged fuzzy solutions
can be used for testing.

Theorem 4.1. Suppose that γj(Υ0) = {Υ(j), j = 1, 2, . . .} is a sequence of (27) in which the initial point is Υ(0) and
the level set L(Υ0) = {Υ(j) | E(Υ(j)) ≤ E(Υ(0))} is bounded. Then

(a) γj(Υ0) is bounded.

(b) There exists Ῡ such that limj→∞ Υ(j) = Ῡ.

Proof. (a) Since in the proposed fuzzy system the adjustable parameters are optimized by the gradient descent
algorithm, thus E(Υ(j)) in (26) along {Υ(j), j = 1, 2, . . .} is monotone nonincreasing. Therefore γj(Υ0) ⊆ L(Υ(0)),
that is to say γj(Υ0) = {Υ(j), j = 1, 2, . . .} is bounded.

(b) By (a), γj(Υ0) = {Υ(j), j = 1, 2, . . .} is a bounded set of points. Thus there exists limiting point Ῡ , and there
exists a sequence {jk} → ∞ such that γjk(Υ0) = {Υ(jk)} → Ῡ, as k → ∞, which indicates that Ῡ is ω-limit point
of γj(Υ0). Using the LaSalle invariant set theorem for discrete time dynamical systems (see [22]), one has that
{Υ(j)} → Ῡ ∈M as j → ∞, where M is the largest invariant set in M = {Υ(j) | E(Υ(j + 1))− E(Υ(j)) = 0}.
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5 Formulation of the V-OFDOCPs

V-OFDOCPs are a category of Variable-order fractional optimal control problems (V-OFOCPs) that involve time-
delay systems. V-OFDOCPs have been used in modeling many real-life phenomena, hence, these problems have been
investigated by researchers. Generally, the numerical methods to solve V-OFDOCPs are divided into indirect and direct
methods. The direct methods solve the problems by approximating the state and control functions, whereas indirect
methods derive a class of V-OFDDAEs by the Hamilton’s principle. In this section, we investigate some of the control
problems that are well suitable for the V-OFDDAE system framework. In particular, we show that the V-OFDOCPs
can be reformulated as a V-OFDDAE. The derived V-OFDDAE can then be solved by proposed method.

In this paper, we consider the following class of V-OFDOCPs

minimize J(u) =

∫ T

0

F (t, x(t), u(t))dt, (29)

subject to

Mẋ(t) +NABC
0 D

α(t)
t x(t) = G(t, x(t), u(t), x(t− τx), u(t− τu)), 0 < t ≤ T, (30)

x(t) = ϕ(t), −τx ≤ t ≤ 0, (31)

u(t) = φ(t), −τu ≤ t ≤ 0, (32)

where (M,N ) ̸= (0, 0), x ∈ Rn is the state vector, u ∈ Rm is the control variable, F ∈ R has continuous first and
second partial derivatives with respect to all its arguments, and G ∈ Rn is Lipschitz continuous. Also we assume that
T is fixed.

In order to reformulate the problem (29)-(32) as a V-OFDDAE , we obtain the necessary optimality conditions
corresponding to this V-OFDOCP. To start, according to the problem (29)-(32), we define the Hamiltonian function H
as following:

H(t, x(t), u(t), x(t− τx), u(t− τu), λ(t)) = F (t, x(t), u(t)) + λTG(t, x(t), x(t− τx), u(t), u(t− τu)), (33)

where λ ∈ Rn is a vector of Lagrange multipliers. The following theorem expresses the necessary optimality conditions
of the problem (29)-(32).

Theorem 5.1. If x(t), λ(t) and u(t) are the optimal values of the state, co-state and control respectively, they must
satisfy the following conditions

Mẋ(t) +NABC
0 D

α(t)
t x(t) =

∂H

∂λ(t)
, 0 < t ≤ T,

Mλ̇(t)−NABC
t D

α(t)
T λ(t) = − ∂H

∂x(t)
− χ[0,T−τx]Hx(t+ τx), 0 ≤ t < T,

∂H

∂u(t)
+ χ[0,T−τu]Hu(t+ τu) = 0, 0 ≤ t ≤ T,

x(t) = ϕ(t), −τx ≤ t ≤ 0,

u(t) = φ(t), −τu ≤ t ≤ 0,

λ(T ) = 0,

(34)

where Hx(t) =
∂H

∂x(t− τx)
and Hu(t) =

∂H

∂u(t− τu)
.

Proof. We follow the traditional approach for finding the necessary condition of delay fractional optimal control, as

J (u) =

∫ T

0

(
H(t, x(t), u(t), x(t− τx), u(t− τu), λ(t))− λ

(
Mẋ(t) +NABC

0 D
α(t)
t x(t)

))
dt. (35)

We consider variations of the form

x(t) + δx(t), u(t) + δu(t), λ(t) + δλ(t), x(t− τx) + δx(t− τx), u(t− τu) + δu(t− τu).

Minimization of J and hence minimization of J requires that the first variation of J must vanish when evaluated along
a minimizer, we get

0 =

∫ T

0

{ ∂H

∂x(t)
δx(t) +

∂H

∂x(t− τx)
δx(t− τx) +

∂H

∂u(t)
δu(t) +

∂H

∂u(t− τu)
δu(t− τu) +

∂H

∂λ(t)
δλ(t)

− δλ(t)
(
Mẋ(t) +NABC

0 D
α(t)
t x(t)

)
− λ(t)

(
M ˙δx(t) +NABC

0 D
α(t)
t δx(t)

)
}dt.
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Integration by parts gives the relations∫ T

0

λ ˙δx(t)dt = −
∫ T

0

δx(t)λ̇(t)dt+ λ(T )δx(T ),

and ∫ T

0

λABC
0 D

α(t)
t δx(t) =

∫ T

0

δx(t)ABR
t D

α(t)
T λ(t)dt,

because x(0) is specified, we have δx(0) = 0. By using (6)∫ T

0

δx(t)ABR
t D

α(t)
T λ(t)dt =

∫ T

0

δx(t)ABC
t D

α(t)
T λ(t)dt+ λ(T )

M(α(t))

1− α(t)

∫ T

0

δx(t)Eα(t)(
−α(t)
1− α(t)

(T − t)α(t))dt.

Also ∫ T

0

∂H

∂x(t− τx)
δx(t− τx)dt =

∫ T

0

Hx(t)δx(t− τx)dt

=

∫ T

τx

Hx(t)δx(t− τx)dt

=

∫ T−τx

0

Hx(t+ τx)δx(t)dt

=

∫ T

0

Hx(t+ τx)δx(t)dt,

and ∫ T

0

∂H

∂u(t− τu)
δx(t− τu)dt =

∫ T

0

Hu(t)δu(t− τu)dt

=

∫ T

τu

Hu(t)δu(t− τu)dt

=

∫ T−τu

0

Hu(t+ τu)δu(t)dt

=

∫ T

0

Hu(t+ τu)δu(t)dt,

since x(t),−τx ≤ t ≤ 0, and u(t),−τu ≤ t ≤ 0, are specified and Hx = Hu = 0 for t ≥ T . So, we deduce the following
formula

− λ(T )

(
NM(α(t))

1− α(t)

∫ T

0

δx(t)Eα(t)(
−α(t)
1− α(t)

(T − t)α(t))dt+Mδx(T )

)

+

∫ T

0

{δx(t)
(
∂H

∂x
+Hx +Mλ̇−NABC

t D
α(t)
T λ(t)

)
+ δu(t)(

∂H

∂u
+Hu) + δλ(t)

(
∂H

∂λ
−Mẋ(t)−NABC

0 D
α(t)
t x(t)

)
}dt = 0.

Assuming NM(α(t))

1− α(t)

∫ T

0
δx(t)Eα(t)(

−α(t)
1− α(t)

(T − t)α(t))dt ̸= −Mδx(T ) and since the variation functions were chosen

arbitrarily, then the proof of theorem is complete.

The first two equations in (34) are the canonical Hamilton equations. The third equation can be viewed as an
algebraic constraint. Therefore we shall call (34) a Hamiltonian V-OFDDAE.
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6 Numerical examples

In this section, several examples are provided to illustrate the efficiency and validity of the proposed numerical approach.
For all examples, the values of the error function E(Υ) and the elapsed central processing unit (CPU) time (in seconds)
for different values of α(t) are listed. By providing an error table for different values of α(t), we confirm that the
solutions for 0 < α(t) ≤ 1 are accurate. All the numerical results are carried out on a personal computer with a 2.60
GHz Intel Core i7 processor and 6 GB of RAM running Windows.

Example 6.1. Consider the following multi-delay V-OFDDAE as[
1 0
0 0

]
ABC
0 D

α(t)
t x(t) =

[
1 0
0 1

]
x(t) +

[
x1(t− 1)
x2(t− 0.6)

]
+

[
0
f(t)

]
, t ≥ 0, (36)

x(t) =

[
exp(0.5t)
sin(πt)

]
, t ≤ 0, (37)

The function f(t) is chosen such that the exact solution of the problem is x∗(t) =

[
exp(0.5t)
sin(πt)

]
. Considering the conditions

x1(0) = 1 and x2(0) = 0, we can choose the fuzzy solutions as

x1FS
= 1 + tFSx1

,

x2FS
= tFSx2

.

Figures 3 and 4 present the exact and approximate values of x1(t) and x2(t) with m = 11 for some different variable
orders α(t) . The absolute errors of x1(t) and x2(t) with m = 11 at various values of α(t) are shown in Figure 5. The
values of the error function E(Υ) and CPU time for different values of α(t) are listed in Table 1. From Figures 3 - 5
and Table 1, it is clear that using the proposed method leads to good approximations of the exact solutions (m = 11).

Table 1: The values of the error function E(Υ) and CPU time for different values of α(t) in Example 6.1.

α(t) E(Υ) CPU time(s)

α1(t) = 1
1+exp(−t)

4.4750 × 10−20 0.344

α2(t) = 0.7 + 0.05 sin( t
10

) 3.0586 × 10−20 0.437

α3(t) = tanh(t + 1) 1.5952 × 10−16 0.594

α4(t) = 0.6 1.2874 × 10−19 0.360

Example 6.2. Consider the following V-OFDDAE[
0 1
0 0

]
ABC
0 D

α(t)
t x(t) =

[
1 0
0 1

]
x(t) +

[
1 0
0 1

]
x(t− 1) +

[
1− exp(t)− exp(t− 1)

1− 2t

]
, t ≥ 0, (38)

x(t) =

[
exp(t)
t

]
, t ≤ 0, (39)

For α(t) = 1 the exact solution of the mentioned problem is x(t) =

[
exp(t)
t

]
. Here, the proposed method is employed to

solve problem (38)-(39). Considering the conditions x1(0) = 1 and x2(0) = 0, we can choose the fuzzy solutions with
11 fuzzy rules (m=11) as

x1FS
= 1 + tFSx1 ,

x2FS
= tFSx2 .

The exact solution at α(t) = 1 and the behavior of the numerical solutions x1(t) and x2(t) in different values of α(t) is
presented in Figure 6. In Table 2, the absolute errors of x(t) for α(t) = 1 are shown. Also, Table 3 indicates the values
of the error function E(Υ) and the elapsed CPU time for different values of α(t). From Figure 6 and Tables 2 and 3,
it is clear that good approximation results are achieved by the present method, with a small number of fuzzy rules.
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(c) α3(t) = tanh(t+ 1)
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(d) α4(t) = 0.6

Figure 3: Approximate solutions of x1(t) at different values of α(t) for Example 6.1.
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(c) α3(t) = tanh(t+ 1)
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Figure 4: Approximate solutions of x2(t) at different values of α(t) for Example 6.1.
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Figure 5: Absolute errors of x1(t) and x2(t) at different values of α(t) for Example 6.1.
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Table 2: The absolute errors of x(t) at α(t) = 1 in Example 6.2.

t Error of x1(t) Error of x2(t)

0.2 1.765 × 10−4 4.706 × 10−11

0.4 1.280 × 10−4 1.057 × 10−10

0.6 1.003 × 10−4 1.649 × 10−10

0.8 7.714 × 10−5 1.285 × 10−10

1 5.757 × 10−5 1.866 × 10−11

1.2 2.184 × 10−4 4.790 × 10−11

1.4 1.582 × 10−4 4.078 × 10−11

1.6 1.224 × 10−4 1.010 × 10−10

1.8 9.553 × 10−5 1.481 × 10−10

2 8.394 × 10−5 3.119 × 10−10

Table 3: The values of the error function E(Υ) and CPU time for different values of α(t) in Example 6.2.

α(t) E(Υ) CPU time(s)

α1(t) = 1 2.5410 × 10−21 0.125

α2(t) = 0.8 + 0.03 sin( t
10

) 4.3343 × 10−22 0.422

α3(t) = 0.6 8.7169 × 10−22 0.390

α4(t) = 0.1 + 0.4t 1.0537 × 10−22 0.485

α5(t) = 0.9 − 0.4t 3.5363 × 10−22 0.391

Example 6.3. Consider the following V-OFDDAE as
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

ABC
0 D

α(t)
t x(t) =


0 0 1 0
0 0 0 1
0 −4 0 0
1 −1 0 0

x(t) +

0 0 0 0
0 0 0 1
5 0 0 0
0 5 0 0

x(t− π) (40)

+


0
0
0

cos(t) sin(2t)− sin(t) cos(2t)

 , t ≥ 0,

x(t) =


sin(t) cos(2t)
cos(t) sin(2t)

cos(t) cos(2t)− 2 sin(t) sin(2t)
2 cos(t) cos(2t)− sin(t) sin(2t)

 , t ≤ 0. (41)

The exact solution of this V-OFDDAE for α(t) = 1 is x(t) =


sin(t) cos(2t)
cos(t) sin(2t)

cos(t) cos(2t)− 2 sin(t) sin(2t)
2 cos(t) cos(2t)− sin(t) sin(2t)

 . The exact solution at

α(t) = 1 and the approximate solutions of x1(t), x2(t), x3(t) and x4(t) with m = 11 for different values of α(t) are
presented in Figure 7. In Table 4, the absolute errors of x(t) for α(t) = 1 are shown. Moreover, Table 5 indicates the
values of the error function E(Υ) and CPU time for different values of α(t).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 t

0

1

2

3

4

5

6

7

8

9

 x
1
(t

)

 Exact  for  =1

 
1
(t)

 
2
(t)

 
3
(t)

 
4
(t)

 
5
(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

0

0.5

1

1.5

2

2.5

x
2
(t

)

 Exact for  =1

 
1
(t)

 
2
(t)

 
3
(t)

 
4
(t)

 
5
(t)

Figure 6: Approximate solutions of x1(t) and x2(t) at different values of α(t) for Example 6.2.
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Figure 7: Approximate solutions of x1(t), x2(t), x3(t) and x4(t) at different values of α(t) for Example 6.3.

Table 4: The absolute errors of x(t) at α(t) = 1 in Example 6.3.

t Error of x1(t) Error of x2(t) Error of x3(t) Error of x4(t)

0.4 3.26 × 10−3 3.26 × 10−3 6.60 × 10−2 6.51 × 10−2

0.8 2.27 × 10−2 2.27 × 10−2 9.91 × 10−3 1.28 × 10−2

1.2 1.86 × 10−2 1.86 × 10−2 7.63 × 10−3 3.75 × 10−3

1.6 1.71 × 10−2 1.71 × 10−2 5.45 × 10−2 4.45 × 10−2

2 9.73 × 10−3 9.73 × 10−3 2.59 × 10−2 3.30 × 10−2

2.4 1.23 × 10−2 1.23 × 10−2 4.64 × 10−2 3.71 × 10−2

2.8 3.07 × 10−2 3.07 × 10−2 3.37 × 10−2 2.27 × 10−2

3.2 1.36 × 10−3 1.36 × 10−3 1.31 × 10−2 2.86 × 10−2

3.6 1.01 × 10−2 1.01 × 10−2 7.00 × 10−2 1.37 × 10−2

4 6.25 × 10−4 6.25 × 10−4 7.82 × 10−2 6.22 × 10−2

Table 5: The values of the error function E(Υ) and CPU time for different values of α(t) in Example 6.3.

α(t) E(Υ) CPU time(s)

α1(t) = 1 2.4961 × 10−14 0.187

α2(t) = 1
1+exp(−t)

1.7088 × 10−16 0.953

α3(t) = 1 − (cos(t))2

3
1.1053 × 10−16 0.969

α4(t) = 0.2 + ( t
5
)2 1.0023 × 10−16 0.906

α5(t) = 0.6 2.0192 × 10−17 0.985

Example 6.4. Consider the following V-OFDOCP with delay in state as

minimize J(u) =
1

2

∫ 2

0

(x2(t) + u2(t))dt, (42)

subject to

ABC
0 D

α(t)
t x(t) = tx(t− 1) + u(t), 0 < t ≤ 2, (43)

x(t) = 1, −1 ≤ t ≤ 0. (44)

Here, the proposed method is employed to solve problem (42)-(44). The Hamiltonian function in this problem is

H(x(t), x(t− 1), u(t), λ(t), t) =
1

2
(x2(t) + u2(t)) + λ(t)(tx(t− 1) + u(t)).
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Figure 8: Approximate solutions of x(t) and u(t) at different values of α(t) for Example 6.4.

Therefore the optimality conditions given by equation (34) becomes

ABC
t D

α(t)
2 λ(t) = x(t) + χ[0,1](t+ 1)λ(t+ 1), 0 ≤ t < 2,

ABC
0 D

α(t)
t x(t) = tx(t− 1) + u(t), 0 < t ≤ 2,

u(t) + λ(t) = 0,

x(t) = 1, −1 ≤ t ≤ 0.

λ(2) = 0.

(45)

Considering the conditions x(0) = 1 and λ(2) = 0, we can choose the fuzzy solutions as

xFS = 1 + tFSx,

λFS = (2− t)FSλ,

uFS = FSu.

In Table 6, a comparison is made between the values of performance index obtained by Grunwald-Letnikov approximation
[16], together with the presented method for different values of α(t). The behavior of the numerical solutions of the state
variable x(t) and the control variable u(t) in different values of α(t) is presented in Figure 8. Also, Table 7 indicates
the values of the error function E(Υ) and the elapsed CPU time for different values of α(t). Values of the obtained
results of the considered problem are provided in Table 8.

Table 6: Results of J at different values of α(t) for Example 6.4.

α(t) 1 0.9 0.8 1 − cos(t)2

3
1 − 0.5

1+exp(−t)
tanh(t + 1)

The proposed method m = 11 1.1033 1.0836 1.0211 0.8659 1.0985 0.9356

The method of [16] 1.2018 1.2232 1.2546 − − −

Table 7: The values of the error function E(Υ) and CPU time for Example 6.4.

α(t) E(Υ) CPU time(s)

α1(t) =1 1.53319 × 10−23 0.256

α2(t) =0.9 1.71997 × 10−20 0.468

α3(t) = 1 − cos(t)2

3
1.4041 × 10−22 0.672

α4(t) = 1 − 0.5
1+exp(−t)

4.6986 × 10−23 0.656

α5(t) = tanh(t + 1) 1.7422 × 10−23 0.594

α6(t) = 0.8 6.0986 × 10−20 0.469
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Table 8: The approximate solutions at different values of α(t) in Example 6.4.

α(t) = 1 α(t) = tanh(t + 1)

t x(t) u(t) x(t) u(t)

0 1 −1.6623 1 −1.8238
0.2 0.7519 −1.3530 0.5801 −1.3472
0.4 0.5634 −1.1055 0.4117 −1.0524
0.6 0.4651 −0.8970 0.3628 −0.8309
0.8 0.4412 −0.7445 0.3659 −0.6725
1 0.4856 −0.6325 0.4540 −0.5613
1.2 0.5657 −0.5325 0.5223 −0.4616
1.4 0.6348 −0.4080 0.5633 −0.3460
1.6 0.7231 −0.2781 0.6184 −0.2300
1.8 0.8297 −0.1133 0.6800 −0.0912
2 1.0026 0 0.7497 0

Example 6.5. Consider the following V-OFDOCP with different delays in states as

minimize J(u) =
1

2

∫ 1

0

((x1(t) + x2(t))
2 + u2(t))dt, (46)

subject to

ABC
0 D

α(t)
t x1(t) = tx1(t) + x2(t−

1

4
), 0 < t ≤ 1, (47)

ABC
0 D

α(t)
t x2(t) = t2x2(t)− 5x1(t−

1

4
)− x2(t−

1

4
) + u(t), 0 < t ≤ 1, (48)

x1(t) = x2(t) = 1,
−1

4
≤ t ≤ 0. (49)

The necessary conditions of optimality are described by

ABC
t D

α(t)
1 λ1(t) = x1(t) + x2(t) + tλ1(t)− χ[0, 34 ]

5λ2(t+
1
4 ), 0 ≤ t < 1,

ABC
t D

α(t)
1 λ2(t) = x1(t) + x2(t) + t2λ2(t) + χ[0, 34 ]

λ1(t+
1
4 )− χ[0, 34 ]

λ2(t+
1
4 ), 0 ≤ t < 1,

ABC
0 D

α(t)
t x1(t) = tx1(t) + x2(t− 1

4 ), 0 < t ≤ 1,
ABC
0 D

α(t)
t x2(t) = t2x2(t)− 5x1(t− 1

4 )− x2(t− 1
4 ) + u(t), 0 < t ≤ 1,

u(t) + λ2(t) = 0, 0 ≤ t ≤ 1,

x1(t) = x2(t) = 1,
−1

4
≤ t ≤ 0,

λ1(1) = λ2(1) = 0.

(50)

The approximate solutions of x1(t), x2(t) and u(t) for different values of α(t) are presented in Figure 9. In Table 9, the
approximate values of J obtained by Grunwald-Letnikov approximation [16] and the numerical results of the suggested
method with different values of α(t) are listed. Moreover, Table 10 indicates the values of the error function E(Υ) and
CPU time for different values of α(t).Values of the obtained results of the considered problem are provided in Table 11.

Table 9: Results of J at different values of α(t) for Example 6.5.

α(t) 1 0.9 0.8 0.9 + 0.01 exp(t) tanh( 3
2
(t + 1)) cos(

(t+1)π
18

)

The proposed method m = 21 1.5002 3.2710 2.5612 3.1082 2.2178 2.1222

The method of [16] 1.7548 2.2392 2.7998 - - -

Table 10: The values of the error function E(Υ) and CPU time for Example 6.5.

α(t) E(Υ) CPU time(s)

α1(t) =1 1.14086 × 10−23 0.359

α2(t) = 0.9 + 0.01 exp(t) 1.5120 × 10−23 1.181

α3(t) = tanh( 3
2
(t + 1)) 1.2678 × 10−18 1.25

α4(t) =0.9 5.68724 × 10−23 0.875

α5(t) = cos(
(t+1)π

18
) 4.0750 × 10−22 1.141

α6(t) = 0.8 5.81165 × 10−23 0.938

To end this section, we present some advantages of the proposed method.
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Figure 9: Approximate solutions of x1(t), x2(t) and u(t) at different values of α(t) for Example 6.5.

Table 11: The approximate solutions at different values of α(t) in Example 6.5.

α(t) = 1 α(t) = 0.9 + 0.01 exp(t)

t x1(t) x2(t) u(t) x1(t) x2(t) u(t)

0 1 1 0.0591 1 1 -0.7598
0.1 0.9997 0.5778 0.4070 1.1686 -0.0070 0.1160
0.2 1.1303 0.0061 0.6445 1.3462 -0.6509 0.7970
0.3 1.2391 −0.4899 0.8156 1.3665 -1.1579 1.3255
0.4 1.3119 −0.9774 0.8900 1.3298 -1.7166 1.6609
0.5 1.3504 −1.4784 0.9017 1.2536 -2.2291 1.7885
0.6 1.3469 −2.0141 0.8335 1.1139 -2.7102 1.7102
0.7 1.3167 −2.5744 0.7090 0.9127 -3.1870 1.4623
0.8 1.2316 −3.1817 0.5169 0.6385 -3.6552 1.1439
0.9 1.1097 −3.8292 0.2485 0.2850 -4.1174 0.6856
1 0.9086 −4.5577 0 −0.1839 -4.5936 0

• The main advantage of the fuzzy system is its representative power; i.e. it is capable to describe a highly nonlinear
system by using a small number of rules.

• We can use more number of rules or more collocation points over the interval [0, T ] to obtain more accurate
approximations.

• The fuzzy solutions of variables are differentiable functions of time t, thus we can calculate the solution at each
arbitrary point over the interval [0, T ].

• The employment of the fuzzy system provides a solution of V-OFDDAEs with superior interpolation properties.

• The computational burden can be greatly reduced using the proposed approach compared with existing methods.

• In all examples, by providing an error table for different values of α(t), we confirm that the solutions for 0 <
α(t) ≤ 1 are accurate.

• The convergence of the proposed scheme is also provided.

7 Conclusion

In this paper, an artificial intelligence method based on fuzzy systems has been introduced for the numerical solution of
V-OFDDAEs. For this aim, by relying on the ability of fuzzy systems in function approximation, the fuzzy solutions of
variables are substituted in V-OFDDAEs. Then, the parameters of fuzzy solutions are adjusted via a learning algorithm.
It is shown that the V-OFDOCPs can be reformulated as a V-OFDDAE and are then solved by the proposed method.
The simulation results confirm the effectiveness and capability of the suggested technique to solve V-OFDDAEs. As a
future work, fuzzy systems can be used for solving fractional differential algebraic equations with time-varying delays.
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