
تعداد نشریات | 33 |
تعداد شمارهها | 764 |
تعداد مقالات | 7,395 |
تعداد مشاهده مقاله | 12,239,802 |
تعداد دریافت فایل اصل مقاله | 8,351,966 |
Advancing big data clustering with fuzzy logic-based IMV-FCA and ensemble approach | ||
Iranian Journal of Fuzzy Systems | ||
دوره 21، شماره 2، خرداد و تیر 2024، صفحه 141-160 اصل مقاله (1.71 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2024.44621.7855 | ||
نویسندگان | ||
Lakshmi Srinivasulu Dandugala* 1؛ Koneru Suvarna Vani2 | ||
1Research Scholar, Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India | ||
2Department of Computer Science and Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Kanuru, Vijayawada, Andhra Pradesh. | ||
چکیده | ||
The act of gathering, looking over, and analyzing a lot of data to find patterns, insights, and market trends that can help businesses make more effective choices is known as big data analysis (BDA). Quick and effective access to this data allows businesses to be flexible in developing strategies to hold onto their competitive edge. To analyze massive amounts of data quickly through parallel processing, the structure of the Hadoop software employs the MapReduce methodology. Computational solid resources are necessary for BDA, although they are not always available. Developing new clustering techniques that could handle this kind of data processing became crucial. Therefore, in this research, we presented a novel, effective fuzzy-based Improved Multiview Fuzzy C-Means Algorithm (IMV-FCA) to boost the clustering strategy. To summarize, fuzzy-based IMV-FCA clustering presents the ensemble of the MobileNet V2 model, and three-layered stacked Bidirectional LSTM (MVSBiLSTM) to increase computing speed and effectiveness. It also presents a function that calculates the separation among the cluster center and the particular instance, to assist with better clustering. By simulating shared memory space and parallelizing on the framework known as MapReduce on the Hadoop cloud computing platform, the distributed database is utilized to improve the method’s effectiveness while reducing its time complexities. The experimental investigation was conducted on existing approaches, and the proposed approach was analyzed using three standard datasets. While differentiating from existing approaches, the presented approach yields greater performances in terms of various metrics. | ||
کلیدواژهها | ||
Big data analytics (BDA)؛ Hadoop؛ cloud computing؛ Fuzzy based energy efficient clustering؛ MobileNet V2؛ Mapreduce | ||
مراجع | ||
[1] R. M. Alguliyev, R. M. Aliguliyev, L. V. Sukhostat, Parallel batch k-means for big data clustering, Computers and Industrial Engineering, 152 (2021), 107023. https://doi.org/10.1016/j.cie.2020.107023 [2] R. A. Ariyaluran Habeeb, F. Nasaruddin, A. Gani, M. A. Amanullah, I. Abaker Targio Hashem, E. Ahmed, M. Imran, Clustering-based real-time anomaly detection-A breakthrough in big data technologies, Transactions on Emerging Telecommunications Technologies, 33(8) (2022), e3647. https://doi.org/10.1002/ett.3647 [3] F. H. Awad, M. M. Hamad, L. Alzubaidi, Robust classification and detection of big medical data using advanced parallel K-means clustering, YOLOv4, and logistic regression, Life, 13(3) (2023), 691. https://doi.org/10.3390/ life13030691 [4] O. Azeroual, A. Nikiforova, Apache spark and mllib-based intrusion detection system or how the big data technologies can secure the data, Information, 13(2) (2022), 58. https://doi.org/10.3390/info13020058 [5] L. Deng, L.Wan, J. Guo, Research on security anomaly detection for big data platforms based on quantum optimization clustering, Mathematical Problems in Engineering, 2(13) (2022). https://doi.org/10.1155/2022/4805035 [6] K. G. Flores, S. E. Garza, Density peaks clustering with gap-based automatic center detection, Knowledge-Based Systems, 206 (2020), 106350. https://doi.org/10.1016/j.knosys.2020.106350 [7] S. Garg, K. Kaur, S. Batra, G. S. Aujla, G. Morgan, N. Kumar, R. Ranjan, En-ABC: An ensemble artificial bee colony based anomaly detection scheme for cloud environment, Journal of Parallel and Distributed Computing, 135 (2020), 219-233. https://doi.org/10.1016/j.jpdc.2019.09.013 [8] M. Ianni, E. Masciari, G. M. Mazzeo, M. Mezzanzanica, C. Zaniolo, Fast and effective big data exploration by clustering, Future Generation Computer Systems, 102 (2020), 84-94. https://doi.org/10.1016/j.future.2019. 07.077 [9] M. Ikotun, A. E. Ezugwu, L. Abualigah, B. Abuhaija, J. Heming, K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data, Information Sciences, 622 (2023), 178-210. https: //doi.org/10.1016/j.ins.2022.11.139 [10] F. Jemili, Intelligent intrusion detection based on fuzzy big data classification, Cluster Computing, 26(6) (2023), 3719-3736. https://doi.org/10.1007/s10586-022-03769-y [11] T. Li, G. Kou, Y. Peng, S. Y. Philip, An integrated cluster detection, optimization, and interpretation approach for financial data, IEEE Transactions on Cybernetics, 52(12) (2021), 13848-13861. https://doi.org/10.1109/ TCYB.2021.3109066 [12] W. Liu, Computer network confidential information security based on big data clustering algorithm, Wireless Communications and Mobile Computing, 2(12) (2022). https://doi.org/10.1155/2022/4927504 [13] X. Liu, Q. Sun, W. Lu, C. Wu, H. Ding, Big-data-based intelligent spectrum sensing for heterogeneous spectrum communications in 5G, IEEE Wireless Communications, 27(5) (2020), 67-73. https://doi.org/10.1109/MWC. 001.1900493 [14] M. Mahdavisharif, S. Jamali, R. Fotohi, Big data-aware intrusion detection system in communication networks: A deep learning approach, Journal of Grid Computing, 19 (2021), 1-28. https://doi.org/10.1007/ s10723-021-09581-z [15] G. Manogaran, P. M. Shakeel, S. Baskar, C. H. Hsu, S. N. Kadry, R. Sundarasekar, B. A. Muthu, FDM: Fuzzyoptimized data management technique for improving big data analytics, IEEE Transactions on Fuzzy Systems, 29(1) (2020), 177-185. https://doi.org/10.1109/TFUZZ.2020.3016346 [16] V. D. Minh, T. T. Ngan, T. M. Tuan, V. T. Duong, N. T. Cuong, An improvement in integrating clustering method and neural network to extract rules and application in diagnosis support, Iranian Journal of Fuzzy Systems, 19(5) (2022), 147-165. https://doi.org/10.22111/IJFS.2022.7162 [17] S. H. Mousavi, M. Khansari, R. Rahmani, A fully scalable big data framework for Botnet detection based on network traffic analysis, Information Sciences, 512 (2020), 629-640. https://doi.org/10.1016/j.ins.2019.10.018 [18] A. Nowak-Brzezi´nska, W. Lazarz, Qualitative data clustering to detect outliers, Entropy, 23(7) (2021), 869. https: //doi.org/10.3390/e23070869 [19] K. K. Pandey, D. Shukla, Stratified linear systematic sampling based clustering approach for detection of financial risk group by mining of big data, International Journal of System Assurance Engineering and Management, (2022), 1-15. https://doi.org/10.1007/s13198-021-01424-0 [20] K. K. Pandey, D. Shukla, Cancer tissue detection using improved K-means initialization method for multidimensional microarray big data clustering, Journal of Ambient Intelligence and Humanized Computing, 14(7) (2023), 9277-9303. https://doi.org/10.1007/s12652-022-04428-1 [21] K. Rajendra Prasad, M. Mohammed, L. V. Narasimha Prasad, D. K. Anguraj, An efficient sampling-based visualization technique for big data clustering with crisp partitions, Distributed and Parallel Databases, 39 (2021), 813-832. https://doi.org/10.1007/s10619-021-07324-3 [22] M. I. Razzak, M. Imran, G. Xu, Big data analytics for preventive medicine, Neural Computing and Applications, 32 (2020), 4417-4451. https://doi.org/10.1007/s00521-019-04095-y [23] K. Tripathi, K. Sharma, M. Bala, A novel clustering method using enhanced grey wolf optimizer and MapReduce, Big Data Research, 14 (2018), 93-100. https://doi.org/10.1016/j.bdr.2018.05.002 [24] C. Xia, Financial security risk detection in colleges and universities relying on big data clustering center scheduling algorithm, Advances in Multimedia, 10(1) (2022), 1-12. https://doi.org/10.1155/2022/1361041 [25] Y. Zhang, DBSCAN clustering algorithm based on big data is applied in network information security detection, Security and Communication Networks, 1(10) (2022). https://doi.org/10.1155/2022/9951609 [26] W. Zhong, N. Yu, C. Ai, Applying big data based deep learning system to intrusion detection, Big Data Mining and Analytics, 3(3) (2020), 181-195. https://doi.org/10.26599/BDMA.2020.9020003 [27] H. Zhou, G. Sun, S. Fu, L. Wang, J. Hu, Y. Gao, Internet financial fraud detection based on a distributed big data approach with node2vec, IEEE Access, 9 (2021), 43378-43386. https://doi.org/10.1109/ACCESS.2021.3062467 [28] Q. Zhu, L. Sun, Big data-driven anomaly detection for cellular networks, IEEE Access, 8 (2020), 31398-31408. https://doi.org/10.1109/ACCESS.2020.2973214 | ||
آمار تعداد مشاهده مقاله: 187 تعداد دریافت فایل اصل مقاله: 297 |