تعداد نشریات | 32 |
تعداد شمارهها | 735 |
تعداد مقالات | 7,132 |
تعداد مشاهده مقاله | 11,584,843 |
تعداد دریافت فایل اصل مقاله | 7,937,976 |
Null set concept for optimal solutions of fuzzy nonlinear optimization problems | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 1، دوره 21، شماره 2، خرداد و تیر 2024، صفحه 1-18 اصل مقاله (503.14 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2024.45511.8034 | ||
نویسندگان | ||
Jean De La Croix SAMA؛ Kounhinir SOME* | ||
Université Norbert ZONGO | ||
چکیده | ||
In this work, we present a novel approach for resolving a fuzzy single-objective function with fuzzy constraints. The algorithm of the method is based on the null set concept and is focused on minimizing cases. With the null set concept, two partial subtraction orders for fuzzy numbers have been defined, namely simple subtraction and the Hukuhara difference. That allows us to define, respectively, optimal solutions and H-optimal solutions. First, the initial optimization problem is transformed into a deterministic, nonlinear, bi-objective optimization problem. Then, Karush Kuhn Tucker's (KKT) optimality conditions are applied to find deterministic optimal solutions. Finally, a few fuzzy algebraic operations are employed to transform deterministic optimal solutions into fuzzy optimal solutions for the initial solutions. In order to demonstrate the effectiveness of the approach, we have dealt with eleven test problems from the literature. Our method has been compared to those of other methods, and our method is at least the best in each instance. | ||
کلیدواژهها | ||
Fuzzy nonlinear optimization؛ Null set؛ Hukuhara difference؛ ranking function؛ partial ordering | ||
مراجع | ||
[1] A. Akrami, M. M. Hosseini, M. Karbassi, An efficient method for solving a class of nonlinear fuzzy optimization problems, Journal of Mathematical Extension, 10(2) (2016), 101-116. [2] M. Alshammari, M. Al-Smadi, O. A. Arqub, I. Hashim, Residual series representation algorithm for solving fuzzy duffing oscillator equations, Symmetry, 12(4) (2020), 572. https://doi.org/10.3390/sym12040572 [3] O. A. Arqub, Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations, Neural Computing and Applications, 28 (2017), 1591-1610. https://doi.org/10.1007/s00521-015-2110-x [4] O. A. Arqub, J. Singh, M. Alhodaly, Adaptation of kernel functions-based approach with Atangana-Baleanu-Caputo distributed order derivative for solutions of fuzzy fractional Volterra and Fredholm integrodifferential equations, Mathematical Methods in the Applied Sciences, (2021), 1-28. https://doi.org/10.22541/au.160373702.28850586/v1 [5] O. A. Arqub, J. Singh, B. Maayah, M. Alhodaly, Reproducing kernel approach for numerical solutions of fuzzy fractional initial value problems under the Mittag-Leffler kernel differential operator, Mathematical Methods in the Applied Sciences, (2021) 1-22. https://doi.org/10.1002/mma.7305 [6] M. S. Bazaraa, H. D. Sherali, C. M. Shetty, Nonlinear programming: Theory and algorithms, John Wiley and Sons, 2013. [7] S. K. Behera, J. R. Nayak, Optimal solution of fuzzy nonlinear programming problems with linear constraints, International Journal of Advances in Science and Technology, 4(2) (2012), 43-92. [8] R. E. Bellman, L. A. Zadeh, Decision-making in a fuzzy environment, Management Science, 17(4) (1970), 141-164. https://doi.org/10.1287/mnsc.17.4.B141 [9] M. Borza, A. S. Rambely, An approach based on α-cuts and max-min technique to linear fractional programming with fuzzy coefficients, Iranian Journal of Fuzzy Systems, 19(1) (2022), 153-169. https://doi.org/10.22111/IJFS. 2022.6558 [10] Y. Chalco-Cano, W. A. Lodwick, R. Osuna-G´omez, A. Rufi´an-Lizana, The Karush-Kuhn-Tucker optimality conditions for fuzzy optimization problems, Fuzzy Optimization and Decision Making, 15(1) (2016), 57-73. https: //doi.org/10.1007/s10700-015-9213-9 [11] A. Compaor´e, K. Som´e, B. Som´e, New approach to the resolution of triangular fuzzy linear program: MOMAplus method, International Journal of Applied Mathematical Research, 6(4) (2017), 115-120. https://doi.org/10. 14419/ijamr.v6i4.8069 [12] M. Deb, P. K. De, A note on fuzzy multi-objective linear fractional programming problem, International Journal of Computer Science and Network, 3(6) (2014), 568-572. [13] B. Dharmaraj, S. Appasamy, Application of a modified Gauss elimination technique for separable fuzzy nonlinear programming problems, Mathematical Modelling of Engineering Problems, 10(4) (2023), 1481-1486. https://doi. org/10.18280/mmep.100445 [14] R. Horst, P. M. Pardalos, N. V. Thoai, Introduction to global optimization, 2nd Edition Kluwer Academic Publishers, Boston, 2000. [15] A. F. Jameel, A. Sadeghi, Solving nonlinear programming problem in fuzzy environment, International Journal of Contemporary Mathematical Sciences, 7(4) (2012), 159-170. [16] A. Kumar, J. Kaur, Fuzzy optimal solution of fuzzy linear programming problems with inequality constraints, International Journal of Mathematical and Computer Sciences, 6(1) (2010), 37-40. https://doi.org/10.1007/ 978-3-319-31274-3_3 [17] S. H. Nasseri, Fuzzy nonlinear optimization, Journal of Nonlinear Sciences and Applications, 1(4) (2008), 230-235. https://doi.org/10.22436/jnsa.001.04.05 [18] V. D. Pathak, U. M. Pirzada, Necessary and sufficient optimality conditions for nonlinear fuzzy optimization problem, International Journal of Mathematical Science Education Techno-mathematics Research Foundation, 4(1) (2011), 1-16. [19] M. L. Puri, D. A. Ralescu, Fuzzy random variables, Journal of Mathematical Analysis and Applications, 114 (1986), 409-422. https://doi.org/10.1016/0022-247X(86)90093-4 [20] S. Saghi, A. Nazemi, S. Effati, M. Ranjbar, Simplex algorithm for hesitant fuzzy linear programming problem with hesitant cost coefficient, Iranian Journal of Fuzzy Systems, 20(1) (2023), 137-152. https://doi.org/10.22111/ IJFS.2023.7351 [21] J. C. Sama, K. Som´e, A. Compaor´e, Hybrid approach for solving fractional linear optimization problems, Annals of Fuzzy Mathematics and Informatics, 25(2) (2023), 111-123. https://doi.org/10.30948/afmi.2023.25.2.111 [22] N. R. Shankar, G. Ananda-Rao, J. Madh-Latha, V. Sireesha, Solving a fuzzy nonlinear optimization problem by genetic algorithm, International Journal of Contemporary Mathematical Sciences, 5(16) (2010), 791-803. [23] J. Tang, D.Wang, Modelling and optimization for a type of fuzzy nonlinear programming problems in manufacturing systems, Proceedings of the 35th Conference on Decision and Control, 1996. https://doi.org/10.1109/CDC.1996. 577485 [24] H. Tsai, T. R. Chen, A fuzzy nonlinear programming approach for optimizing the performance of a four-objective fluctuation smoothing rule in a wafer fabrication factory, Journal of Applied Mathematics, 2013 (2013), 1-15. https://doi.org/10.1155/2013/720607 [25] P. Umamaheswari, K. Ganesan, A solution approach to fuzzy nonlinear programming problems, International Journal of Pure and Applied Mathematics, 113(13) (2017), 291-300. [26] H. C. Wu, Saddle point optimality conditions in fuzzy optimization problems, Fuzzy Optimization and Decision Making, 2 (2003), 261-273. https://doi.org/10.1023/A:1025098722162 [27] H. C. Wu, A solution concept for fuzzy multiobjective programming problems based on convex cones, Journal of Optimization Theory and Applications, 121 (2004), 397-417. https://doi.org/10.1023/B:JOTA.0000037411. 25509.6a [28] H. C.Wu, On interval-valued nonlinear programming problems, Journal of Mathematical Analysis and Applications, 338 (2008), 299-316. https://doi.org/10.1016/j.jmaa.2007.05.023 [29] H. C. Wu, Solution of fuzzy multiobjective programming problems based on the concept of scalarization, Journal of Optimization Theory and Applications, 139 (2008), 361-378. https://doi.org/10.1007/s10957-008-9419-x [30] H. C. Wu, The optimality conditions for optimization problems with fuzzy-valued objective functions, Fuzzy Optimization and Decision Making, 8 (2009), 295-321. https://doi.org/10.1080/02331930601120037 [31] H. C. Wu, The Karush-Kuhn-Tucker optimality conditions for multi-objective programming problems with fuzzy-valued objective, Fuzzy Optimization and Decision Making, 8 (2009), 1-28. https://doi.org/10.1007/ s10700-009-9049-2 [32] H. C. Wu, Applying the concept of null set to solve the fuzzy optimization problems, Fuzzy Optimization and Decision Making, 18 (2019), 279-314. https://doi.org/10.1007/s10700-018-9299-y [33] L. A. Zadeh, The concept of linguistic variable and its application to approximate reasoning I, Information Sciences, 8 (1975), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5 [34] L. A. Zadeh, The concept of linguistic variable and its application to approximate reasoning II, Information Sciences, 8 (1975), 301-357. https://doi.org/10.1016/0020-0255(75)90046-8 [35] L. A. Zadeh, The concept of linguistic variable and its application to approximate reasoning III, Information Sciences, 9 (1975), 43-80. https://doi.org/10.1007/978-1-4684-2106-4_1 | ||
آمار تعداد مشاهده مقاله: 263 تعداد دریافت فایل اصل مقاله: 453 |