
تعداد نشریات | 33 |
تعداد شمارهها | 770 |
تعداد مقالات | 7,474 |
تعداد مشاهده مقاله | 12,463,504 |
تعداد دریافت فایل اصل مقاله | 8,475,958 |
Fuzzy Fractional Calculus: A Comprehensive Overview with a Focus on weighted Caputo-type generalized Hukuhara Differentiability and Analytical Solutions for Fuzzy Fractional Differential Equations | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 2، دوره 21، شماره 2، خرداد و تیر 2024، صفحه 19-34 اصل مقاله (645.53 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2024.45607.8045 | ||
نویسندگان | ||
Reza Ezzati* 1؛ Samaneh Zabihi2 | ||
1Islamic Azad University, karaj branch | ||
2Department of Mathematics, North Tehran Branch, Islamic Azad University, Tehran, Iran | ||
چکیده | ||
This paper introduces a novel approach to obtaining analytical solutions for fuzzy fractional differential equations in the context of weighted Caputo-type generalized Hukuhara derivatives. The paper proposes the use of non-singular kernels to improve the accuracy of fractional calculus in fuzzy space and establishes the uniqueness of solutions for fuzzy fractional differential equations. The paper also introduces the concept of fuzzy Laplace transforms to facilitate the solution of these equations. Practical examples, such as the fuzzy fractional Newton’s law of heating and cooling, are provided to demonstrate the effectiveness of the proposed method. Overall, this paper contributes to the development of practical solutions for real-world problems in fuzzy space and enhances the accuracy of fractional calculus in this context. | ||
کلیدواژهها | ||
weighted Caputo-type generalized Hukuhara derivative؛ fuzzy fractional differential equations؛ fuzzy analytical solutions؛ uniqueness of solutions؛ Newton’s law of heating and cooling | ||
مراجع | ||
[1] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Analysis: Theory, Methods and Applications, 72 (2010), 59-62. https://doi.org/10.1016/ j.na.2009.11.029 [2] T. Allahviranloo, A. Armand, Z. Gouyandeh, Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, Journal of Intelligent and Fuzzy Systems, 26 (2014), 1481-1490. https://doi.org/10.3233/IFS-130831 [3] T. Allahviranloo, B. Ghanbari, On the fuzzy fractional differential equation with interval Atangana-Baleanu fractional derivative approach, Chaos, Solitons and Fractals, 130 (2020), 109397. https://doi.org/10.1016/j.chaos. 2019.109397 [4] T. Allahviranloo, S. Salahshour, S. Abbasbandy, Explicit solutions of fractional differential equations with uncertainty, Soft Computing, 16 (2012), 297-302. https://doi.org/10.1007/s00500-011-0743-y [5] M. Al-Refai, On weighted Atangana-Baleanu fractional operators, Advances in Difference Equations, 3 (2020). https://doi.org/10.1186/s13662-019-2471-z [6] M. Al-Smadi, O. A. Arqub, D. Zeidan, Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications, Chaos, Solitons and Fractals, 146 (2021), 110891. https://doi.org/10.1016/j.chaos.2021.110891 [7] A. Armand, T. Allahviranloo, S. Abbasbandy, Z. Gouyandeh, The fuzzy generalized Taylor’s expansion with application in fractional differential equations, Iranian Journal of Fuzzy Systems, 16(2) (2019), 57-72. https: //doi.org/10.22111/IJFS.2019.4542 [8] S. Arshad, V. Lupulescu, On the fractional differential equations with uncertainty, Nonlinear Analysis: Theory, Methods and Applications, 74 (2011), 85-93. https://doi.org/10.1016/j.na.2011.02.048 [9] S. Arshad, V. Luplescu, Fractional differential equation with fuzzy initial condition, Electronic Journal of Differential Equations, 34 (2011), 1-8. [10] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230 (2013), 119-141. https://doi.org/10.1016/j.fss.2012.10.003 [11] M. Friedman, M. Ma, A. Kandel, Numerical solutions of fuzzy differential and integral equations, in: Fuzzy Modeling and Dynamics. Fuzzy Sets and Systems, 106(1) (1999), 35-48. https://doi.org/10.1016/S0165-0114(98) 00355-8 [12] S. G. Gal, Approximation theory in fuzzy setting, In: Anastassiou, G. A. (ed.) Handbook of Analytic-Computational Methods in Applied Mathematics. ch13, 617-666. Chapman and Hall/CRC, Boca Raton, 2000. [13] M. Ghaffari, T. Allahviranloo, S. Abbasbandy, M. Azhini, On the fuzzy solutions of time-fractional problems, Iranian Journal of Fuzzy Systems, 18(3) (2021), 51-66. https://doi.org/10.22111/IJFS.2021.6081 [14] R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31-43. https://doi. org/10.1016/0165-0114(86)90026-6 [15] K. Hattaf, New generalized definition of fractional derivative with non-singular kernel, Computation, 8 (2020), 49. https://doi.org/10.3390/computation8020049 [16] K. Hattaf, On some properties of the new generalized fractional derivative with non-singular kernel, Mathematical Problems in Engineering, 2021 (2021). https://doi.org/10.1155/2021/1580396 [17] N. V. Hoa, H. Vu, T. Minh Duc, Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach, fuzzy Sets and Systems, 375 (2019), 70-99. https://doi.org/10.1016/j.fss.2018.08.001 [18] M. Keshavarz, T. Allahviranloo, Fuzzy fractional diffusion processes and drug release, Fuzzy Sets and Systems, 436 (2022), 82-101. https://doi.org/10.1016/j.fss.2021.04.001 [19] M. Keshavarz, E. Qahremani, T. Allahviranloo, Solving a fuzzy fractional diffusion model for cancer tumor by using fuzzy transforms, Fuzzy Sets and Systems, 443 (2022), 198-220. https://doi.org/10.1016/j.fss.2021.10.009 [20] V. Lakshmikantham, T. Bhaskar, J. Devi, Theory of set differential equations in metric spaces, Cambridge Scientific Publishers, 2006. [21] F. Mainardi, On some properties of the Mittag-Leffler function E℘(−t℘), completely monotone for t > 0 with 0 < ℘ < 1, Discrete and Continuous Dynamical Systems-B, 19(7) (2014), 2267-2278. https://doi.org/10.48550/ arXiv.1305.0161 [22] H. E. Mamouni, M. E. Younoussi, Z. Hajhouji, K. Hattaf, N. Yousfi, Existence and uniqueness results of solutions for Hattaf-type fractional differential equations with application to epidemiology, Communications in Mathematical Biology and Neuroscience, 2022 (2022), 39. https://doi.org/10.28919/cmbn/7329 [23] M. Mortezaee, M. Ghovatmand, A. Nazemi, An application of generalized fuzzy hyperbolic model for solving fractional optimal control problems with Caputo-Fabrizio derivative, Neural Processing Letters, 52 (2020), 1997-2020. https://doi.org/10.1007/s11063-020-10334-4 [24] S. Salahshour, T. Allahviranloo, Applications of fuzzy Laplace transforms, Soft Computing, 17 (2013), 145-158. https://doi.org/10.1007/s00500-012-0907-4 [25] S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 1372-1381. https://doi. org/10.1016/j.cnsns.2011.07.005 [26] S. Salahshour, M. Khezerloo, S. Hajighasemi, M. Khorasany, Solving fuzzy integral equations of the second kind by fuzzy Laplace transform method, International Journal of Industrial Mathematics, 4(1) (2012), 21-29. [27] V. M. Tam, On existence and stability results to fuzzy Caputo fractional differential inclusions driven by fuzzy mixed quasivariational inequalities, Iranian Journal of Fuzzy Systems, 20(3) (2023), 43-59. https://doi.org/10. 22111/IJFS.2023.7638 [28] H. Viet Long, N. Thi Kim Son, H. Thi Thanh Tam, The solvability of fuzzy fractional partial differential equations under Caputo gH-differentiability, Fuzzy Sets and Systems, 309 (2017), 35-63. https://doi.org/10.1016/j.fss. 2016.06.018 | ||
آمار تعداد مشاهده مقاله: 252 تعداد دریافت فایل اصل مقاله: 451 |