
تعداد نشریات | 33 |
تعداد شمارهها | 760 |
تعداد مقالات | 7,357 |
تعداد مشاهده مقاله | 12,175,751 |
تعداد دریافت فایل اصل مقاله | 8,317,058 |
Control of a shunt Active Power Filter with Voltage Source Model to Improve the Power Quality Performance | ||
International Journal of Industrial Electronics Control and Optimization | ||
مقاله 8، دوره 7، شماره 3، آذر 2024، صفحه 247-255 اصل مقاله (1006.88 K) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22111/ieco.2024.48277.1547 | ||
نویسندگان | ||
Mohammad Ali Heydari1؛ Mahdi HassanniaKheibari* 2؛ Gholamreza Sadeghi3 | ||
1Department of Electrical and Computer Engineering, University of Sistan and Baluchestan, Zahedan, Iran | ||
2Department of Electrical Engineering, Zahedan Branch, Islamic Azad University, Zahedan, Iran. | ||
3Department of Electrical and Computer Engineering, Arak University of technology, Arak, Iran | ||
چکیده | ||
Active power filters (APFs) play a vital role in reducing the current harmonics and improving power quality. This work studies a shunt APF (SAPF) based on the three-phase voltage source converter (VSC). This paper investigates the new robust control approach using error dynamics. Stable first-order error dynamics are considered when designing the control inputs. Three control inputs are obtained to control the currents at any phase by choosing and optimizing the appropriate parameters. This strategy is also simple to implement in practical applications because it is the same as the proportional-derivative controller design. In addition, the new control method can be utilized for any system with low dynamic information so that the destructive effects of lumped uncertainties in the output channels of the SAPF can be alleviated. The minimum voltage and current measurements are used to control the SAPF, and the grid current harmonics will be reduced by achieving the stabilization of tracking error dynamics. Some numerical simulations are performed by MATLAB software to confirm the proposed method. | ||
کلیدواژهها | ||
Active Power Filter (APF)؛ Voltage Source Converter؛ Error Dynamic؛ Grid Harmonics؛ Power Quality | ||
مراجع | ||
[1] F. Blaabjerg, Control of Power Electronic Converters and Systems: Volume 2, 1st edit. Elsevier, 2018.
[2] A. Terciyanli et al., “A Current Source Converter-Based Active Power Filter for Mitigation of Harmonics at the Interface of Distribution and Transmission Systems,” IEEE Trans. Ind. Appl., vol. 48, no. 4, pp. 1374–1386, Jul. 2012, doi: 10.1109/TIA.2012.2200009. [3] N. Bagheri, H. Alipour, L. Mohammadian, J. Beiza, and M. Ebadpour, “A Multiport isolated resonant LLC converter for grid-tied renewable energy powered bidirectional EV charger,” International Journal of Industrial Electronics Control and Optimization (IECO), vol. 6, no. 1, pp.37-48, 2023. [4] B. Singh, K. Al-Haddad, and A. Chandra, “A review of active filters for power quality improvement,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 960–971, 1999, doi: 10.1109/41.793345. [5] A. Govind, V. Kumar Tayal, and R. K. Kumawat, “Comparison of Current Controlling Methods for Shunt Active Power Filters to Improve Power Quality,” in 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Oct. 2022, no. Lc, pp. 1–5, doi: 10.1109/ICRITO56286.2022.9965182. [6] M. Sabarimuthu, N. Senthilnathan, N. Priyadharshini, M. A. Kumar, N. Telagam, and S. K. Sree, “Comparison of Current Control Methods for a Three Phase Shunt Active Filter,” in 2021 7th International Conference on Electrical Energy Systems (ICEES), Feb. 2021, pp. 32–37, doi: 10.1109/ICEES51510.2021.9383754. [7] H. Akagi, “New trends in active filters for power conditioning,” IEEE Trans. Ind. Appl., vol. 32, no. 6, pp. 1312–1322, 1996, doi: 10.1109/28.556633. [8] J. Afonso, C. Couto, and J. Martins, “Active Filters with Control Based on the p-q Theory,” IEEE Ind. Electron. Soc., vol. 47, no. May 2014, pp. 5–10, 2000, [Online]. Available: http://hdl.handle.net/1822/1921. [9] Z. Xiao, H. Xue, T. Liu, and G. Zheng, “Research on Control Strategy of Shunt Active Power Filter,” in 2023 8th Asia Conference on Power and Electrical Engineering (ACPEE), Apr. 2023, pp. 2377–2382, doi: 10.1109/ACPEE56931.2023.10135649. [10] C. Ranga Rao, R. Balamurugan, and R. Alla, “Synchronization control techniques for shunt active power filter: an overview,” Bull. Electr. Eng. Informatics, vol. 12, no. 1, pp. 1–9, Feb. 2023, doi: 10.11591/eei.v12i1.4300. [11] M. Miletić, K. R. Raguž, V. Zeleničić, I. Erceg, and D. Sumina, “Development of Single-Phase Shunt Active Power Filter for Reduction of Current Harmonics in Data Center Power System,” in 2023 11th International Conference on Smart Grid (icSmartGrid), Jun. 2023, pp. 1–7, doi: 10.1109/icSmartGrid58556.2023.10170839. [12] R. Hou, P. Wang, J. Wu, and D. Xu, “Research on Oscillation Suppression Methods in Shunt Active Power Filter System,” Energies, vol. 15, no. 9, 2022, doi: 10.3390/en15093125. [13] L. Zhou, Z. Zhou, J. Qi, and W. Han, “Hybrid PredictionBased Deadbeat Control for a High-Performance Shunt Active Power Filter,” IEEE Access, vol. 11, no. January, pp. 11118–11131, 2023, doi: 10.1109/ACCESS.2023.3241300. [14] J.-H. Urrea-Quintero, N. Muñoz-Galeano, and J. M. LópezLezama, “Robust Control of Shunt Active Power Filters: A Dynamical Model-Based Approach with Verified Controllability,” Energies, vol. 13, no. 23, p. 6253, Nov. 2020, doi: 10.3390/en13236253. [15] H. Sadeghi, and H.R. Mohammadi, “An improved fuzzy controlled back-to-back electric spring using hybrid structure of ES-1 and shunt-APF to improve power quality in microgrids,” International Journal of Industrial Electronics Control and Optimization (IECO), vol. 5, no. 1, pp.89-98, 2022. [16] T. Toumi, A. Allali, A. Meftouhi, O. Abdelkhalek, A. Benabdelkader, and M. Denai, “Robust control of series active power filters for power quality enhancement in distribution grids: Simulation and experimental validation,” ISA Trans., vol. 107, no. xxxx, pp. 350–359, 2020, doi: 10.1016/j.isatra.2020.07.024. [17] A. Munduate, G. Garcera, and E. Figueres, “Robust control of a Shunt Active Power Filter for the medium voltage range based on a three-level Neutral Point Clamped converter,” in IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, Nov. 2006, pp. 2162–2167, doi: 10.1109/IECON.2006.347274. [18] W.-K. Sou, P.-I. Chan, C. Gong, and C.-S. Lam, “Finite-Set Model Predictive Control for Hybrid Active Power Filter,” IEEE Transactions on Industrial Electronics, vol. 70, no. 1, pp. 52–64, Jan. 2023, doi: 10.1109/tie.2022.3146550. [19] A. Elallali, A. Abouloifa, I. Lachkar, C. Taghzaoui, F. Giri, and Y. Mchaouar, “Nonlinear control of grid-connected PV systems using active power filter with three-phase three-level NPC inverter,” IFAC-PapersOnLine, vol. 55, no. 12, pp. 61–66, 2022, doi: 10.1016/j.ifacol.2022.07.289. [20] V. Hajbani, A. Zakipour, and M. Salimi, “A novel Lyapunovbased robust controller design for LCL-type shunt active power filters using adaptive sliding-mode backstepping approach,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 5, p. 100200, Sep. 2023, doi: 10.1016/j.prime.2023.100200. [21] Y. Fang, J. Fei, and K. Ma, “Model reference adaptive sliding mode control using RBF neural network for active power filter,” Int. J. Electr. Power Energy Syst., vol. 73, pp. 249–258, Dec. 2015, doi: 10.1016/j.ijepes.2015.05.009. [22] L. Zhang and J. Fei, “Intelligent Complementary Terminal Sliding Mode Using Multiloop Neural Network for Active Power Filter,” IEEE Transactions on Power Electronics, vol. 38, no. 8, pp. 9367–9383, Aug. 2023, doi: 10.1109/tpel.2023.3266738. [23] K. Ma and J. Fei, “Model reference adaptive fuzzy control of a shunt active power filter,” J. Intell. Fuzzy Syst., vol. 28, no. 1, pp. 485–494, 2015, doi: 10.3233/IFS-141325. [24] S. Hou and J. Fei, “Adaptive fuzzy sliding control with fuzzy sliding term for three-phase active power filter,” in 2013 10th IEEE International Conference on Control and Automation (ICCA), Jun. 2013, no. 2612012, pp. 1318–1323, doi: 10.1109/ICCA.2013.6564895. [25] R. Guzman, L. G. de Vicuna, J. Morales, M. Castilla, and J. Miret, “Model-Based Control for a Three-Phase Shunt Active Power Filter,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 3998–4007, Jul. 2016, doi: 10.1109/TIE.2016.2540580. [26] C. Gong, W.-K. Sou, and C.-S. Lam, “Design and Analysis of Vector Proportional–Integral Current Controller for LCCoupling Hybrid Active Power Filter With Minimum DCLink Voltage,” IEEE Trans. Power Electron., vol. 36, no. 8, pp. 9041–9056, Aug. 2021, doi: 10.1109/TPEL.2021.3049834. [27] A. Zarei, M. S. Poutari, and S. M. Barakati, “Trajectory tracking for two-degree of freedom helicopter system using a controller-disturbance observer integrated design,” ISA Transactions, vol. 74, pp. 99–110, Mar. 2018, doi: 10.1016/j.isatra.2017.12.026. [28] A. Zarei, Y. Mousavi, R. Mosalanezhad, and M. H. Atazadegan, “Robust Voltage Control in Inverter-Interfaced Microgrids Under Plug-and-Play Functionalities,” IEEE Systems Journal, vol. 14, no. 2, pp. 2813–2824, Jun. 2020, doi: 10.1109/jsyst.2019.2956684. [29] Y. Mousavi, A. Zarei, and Z. S. Jahromi, “Robust adaptive fractional-order nonsingular terminal sliding mode stabilization of three-axis gimbal platforms,” ISA Transactions, vol. 123, pp. 98–109, Apr. 2022, doi: 10.1016/j.isatra.2021.05.027. [30] A. Zarei and S. Tavakoli, “Lumped uncertainty alleviation in output channels of MIMO nonlinear systems based on robust disturbance observer‐based control strategy,” Asian Journal of Control, vol. 25, no. 3, pp. 2001–2011, May 2022, doi: 10.1002/asjc.2834. [31] A. Hassannia, S. M. Barakati, and S. H. Torabi, “Robust discrete sliding mode controller design for a single-phase onboard integrated electric vehicle charger with disturbance estimation,” Computers and Electrical Engineering, vol. 110, p. 108881, Sep. 2023, doi: 10.1016/j.compeleceng.2023.108881. | ||
آمار تعداد مشاهده مقاله: 179 تعداد دریافت فایل اصل مقاله: 183 |