
تعداد نشریات | 33 |
تعداد شمارهها | 764 |
تعداد مقالات | 7,395 |
تعداد مشاهده مقاله | 12,239,836 |
تعداد دریافت فایل اصل مقاله | 8,351,993 |
Event-triggered $H_{\infty}$ filtering for T-S fuzzy discrete-time conic-type nonlinear networked control systems | ||
Iranian Journal of Fuzzy Systems | ||
دوره 21، شماره 3، مرداد و شهریور 2024، صفحه 137-154 اصل مقاله (872.17 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2024.46459.8184 | ||
نویسندگان | ||
M. Syed Ali* 1؛ B. Vigneshwar2؛ G. Rajchakit3؛ B. Priya4؛ G. k. Thakur5 | ||
1Department of Mathematics, Thiruvalluvar University, Vellore - 632 106, Tamilnadu, India | ||
2Department of mathematics, Thiruvalluvar University, vellore-632 106, Tamilnadu, India | ||
3Maejo University | ||
4Applied science, GL Bajaj institute of technology and management, utter pradesh, india | ||
5ABES Engineering College, India | ||
چکیده | ||
We present an event-triggered filtering design based on Takagi-Sugeno (T-S) fuzzy models for nonlinear conic-type networks. Discrete event-triggered systems (ETS) can save communication resources when they are dynamic. Firstly, we construct a appropriate event-triggered $H_{\infty}$ filtering design an error dynamic system. A generalized performance index is developed next, which addresses the $L_{2}-L_{\infty}$ and $H_{\infty}$ fuzzy filtering problems with network transmission delay. Further, an suitable Lyapunov-Krasovskii function is chosen to derive the stability condition of the conic-type error dynamic system and fulfills the given $H_{\infty}$ performance level. A linear matrix inequality (LMI) provides the necessary conditions for the result to be obtained. In addition, numerical examples are presented to verify the proposed new design method. | ||
کلیدواژهها | ||
T-S Fuzzy system؛ conic-type nonlinearities؛ $H_{\infty}$ filter؛ event-triggered scheme؛ network control system | ||
مراجع | ||
[1] Z. Chen, B. Zhang, V. Stojanovic, Y. Zhang, Z. Zhang, Event-based fuzzy control for T-S fuzzy networked systems with various data missing, Neurocomputing, 417 (2020), 322-332. https://doi.org/10.1016/ j.neucom.2020.08. 063 [2] P. Cheng, J. Wang, S. He, X. Luan, F. Liu, Observer-based asynchronous fault detection for conic-type nonlinear jumping systems and its application to separately excited DC motor, IEEE Transactions on Circuits and Systems I: Regular Papers, 67(3) (2019), 951-962. https://doi.org/10.1109/TCSI.2019. 2949368 [3] A. M. El-Nagar, T. R. Khalifa, M. A. El-Brawany, M. El-Bardini, E. A. El-Araby, Adaptive interval type-2 fuzzy controller for nonlinear networked Wiener systems subject to packet dropout and time-varying delay, ISA Transactions, 128 (2022), 565-580. https://doi.org/10.1016/j.isatra.2021.10.018
[4] Z. Gu, P. Shi, D. Yue, Z. T. Ding, Decentralized adaptive event-triggered H1 filtering for a class of networked nonlinear interconnected systems, IEEE Transactions on Cybernetics, 99 (2018), 1-10. https://doi.org/10.1109/ TCYB.2018.2802044
[5] S. He, W. Lyu, F. Liu, Robust H∞ sliding mode controller design of a class of time-delayed discrete conic-type nonlinear systems, IEEE Transactions on Systems, Man, and Cybernetics Systems, 51(2) (2018), 885-892. https: //doi.org/10.1109/TSMC.2018.2884491
[6] S. He, J. Song, Finite-time sliding mode control design for a class of uncertain conic nonlinear systems, IEEE/CAA Journal of Automatica Sinica, 4(4) (2017), 809-816. https://doi.org/10.1109/JAS.2017.7510643
[7] X. Jia, S. Xu, X. Shi, Z. Zhang, Global practical tracking for nonlinear systems with uncertain dead-zone input via output feedback, Journal of the Franklin Institute, 358(6) (2021), 2987-3009. https://doi.org/10.1016/j. jfranklin.2021.02.013
[8] T. R. Khalifa, A. M. El-Nagar, M. A. El-Brawany, E. A. El-Araby, M. El-Bardini, A novel Hammerstein model for nonlinear networked systems based on an interval type-2 fuzzy Takagi Sugeno Kang system, IEEE Transactions on Fuzzy Systems, 29(2) (2020), 275-285. https://doi.org/10.1109/TFUZZ.2020. 3007460 [9] C. C. Ku, W. J. Chang, M. H. Tsai, Y. C. Lee, Observer-based proportional derivative fuzzy control for singular Takagi-Sugeno fuzzy systems, Information Sciences, 570 (2021), 815-830. https://doi.org/ 10.1016/j.ins.2021. 01.023 [10] Z. M. Li, J. H. Park, Dissipative fuzzy tracking control for nonlinear networked systems with quantization, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(12) (2018), 5130-5141. https://doi.org/10.1109/ TSMC.2018.2866996
[11] J. Li, Z. Wang, C. K. Ahn, Y. Shen, Fault detection for Lipschitz nonlinear systems with restricted frequencydomain specifications, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(12) (2020), 7486-7496. https://doi.org/10.1007/s40815-022-01336-6
[12] G. Li, R. Yang, Observer-based hybrid-triggered control for nonlinear networked control systems with disturbances, International Journal of Fuzzy Systems, (2022), 1-10. https://doi.org/10.1007/s40815-022-01336-6
[13] Y. Liu, Y. Ma, Finite-time non-fragile extended dissipative control for T-S fuzzy system via augmented LyapunovKrasovskii functional, ISA Transactions, 117 (2021), 1-15. https://doi.org/10.1016/j.isatra.2021.01.038
[14] Y. Liu, F. Wu, X. Ban, Dynamic output feedback control for continuous-time T-S fuzzy systems using fuzzy Lyapunov functions, IEEE Transactions on Fuzzy Systems, 25(5) (2017), 1155-1167. https://doi.org/10.1109/ TFUZZ.2016.2598852
[15] Q. Lu, P. Shi, L. Wu, H. Zhang, Event-triggered interval type-2 T-S fuzzy control for nonlinear networked systems, Journal of the Franklin Institute, 357(14) (2020), 9834-9852. https://doi.org/10.1016/j.jfranklin.2020.08. 001
[16] J. Mrazgua, R. Chaibi, E. H. Tissir, M. Ouahi, Static output feedback stabilization of T-S fuzzy active suspension systems, Journal of Terramechanics, 97 (2021), 19-27. https://doi.org/10.1016/j.jterra. 2021.05.001 [17] G. Nagamani, Y. H. Joo, G. Soundararajan, R. Mohajerpoor, Robust event-triggered reliable control for TS fuzzy uncertain systems via weighted based inequality, Information Sciences, 512 (2020), 31-49. https://doi.org/10. 1016/j.ins.2019.09.034
[18] T. G. Oliveira, R. M. Palhares, V. C. Campos, P. S. Queiroz, E. N. Gon¸calves, Improved Takagi-Sugeno fuzzy output tracking control for nonlinear networked control systems, Journal of the Franklin Institute, 354(16) (2017), 7280-7305. https://doi.org/10.1016/j.jfranklin.2017.08.042
[19] Y. Pan, G. H. Yang, Event-based output tracking control for fuzzy networked control systems with network-induced delays, Applied Mathematics and Computation, 346 (2019), 513-530. https://doi.org/10.1016/j.amc.2018.10. 038
[20] J. Priyadharsini, P. Balasubramaniam, Controllability of fractional non-instantaneous impulsive integro-differential stochastic delay system, IMA Journal of Mathematical Control and Information, 38(2) (2021), 654-683. https: //doi.org/10.1093/imamci/dnab004
[21] D. Shah, A. Mehta, K. Patel, A. Bartoszewicz, Event-triggered discrete higher-order SMC for networked control system having network irregularities, IEEE Transactions on Industrial Informatics, 16(11) (2019), 6837-6847. https: //doi.org/10.1109/TII.2020.2973739
[22] H. Shen, F. Li, H. Yan, H. R. Karimi, H. K. Lam, Finite-time event-triggered H∞ control for T-S fuzzy Markov jump systems, IEEE Transactions on Fuzzy Systems, 26(5) (2018), 3122-3135. https://doi.org/10.1109/TFUZZ. 2017.2788891
[23] K. Shi, J. Wang, S. Zhong, Y. Tang, J. Cheng, Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control, Fuzzy Sets and Systems, 394 (2020), 40-64. https://doi.org/10. 1016/j.fss.2019.09.001
[24] X. Sun, Q. Zhang, Admissibility analysis for interval type-2 fuzzy descriptor systems based on sliding mode control, IEEE Transactions on Cybernetics, 49(8) (2019), 3032-3040. https://doi.org/10.1109 /TCYB.2018.2837890 [25] M. Syed Ali, S. Saravanan, A. Sabri, Finite-time H∞ state estimation for switched neural networks with timevarying delays, Neurocomputing, 207 (2016), 580-589. https://doi.org/10.1016/j.neucom.2016.05.037
[26] M. Syed Ali, M. Usha, Q. Zhu, S. Saravanan, Synchronization analysis for stochastic T-S fuzzy complex networks with Markovian jumping parameters and mixed time-varying delays via impulsive control, Mathematical Problems in Engineering, (2020), 1-27. https://doi.org/10.1155/2020/9739876
[27] M. Syed Ali, R. Vadivel, R. Saravanakumar, Event-triggered state estimation for Markovian jumping impulsive neural networks with interval time-varying delays, International Journal of Control, 92(2) (2019), 270-290. https: //doi.org/10.1080/00207179.2017.1350884
[28] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 15(1) (1985), 116-132. https://doi.org/10.1016/ B978-1-4832-1450-4.50045-6
[29] J. Wang, S. He, Fuzzy filtering based fault detection for a class of discrete-time conic-type nonlinear systems, IET Signal Processing, 15(3) (2021), 153-161. https://doi.org/10.1049/sil2.12016
[30] L. Wang, X. Liu, H. Zhang, Further studies on H∞ observer design for continuous-time Takagi-Sugeno fuzzy model, Information Sciences, 422 (2018), 396-407. https://doi.org/10.1109/TCYB.2019.2933696
[31] W. Wang, R. Postoyan, D. Neic, W. P. M. H. Heemels, Periodic event-triggered control for nonlinear networked control systems, IEEE Transactions on Automatic Control, 65(2) (2019), 620-635. https://doi.org/10.1109/TAC. 2019.2914255
[32] Y. Wang, Y. Xia, H. Shen, P. Zhou, SMC design for robust stabilization of nonlinear Markovian jump singular systems, IEEE Transactions Automatic Control, 63(1) (2018), 219-224. https://doi.org/10.1109/TAC.2017. 2720970
[33] J. Wang, C. Yang, J. Xia, Z. G. Wu, H. Shen, Observer-based sliding mode control for networked fuzzy singularly perturbed systems under weighted try-once-discard protocol, IEEE Transactions on Fuzzy Systems, 30(6) (2021), 1889-1899. https://doi.org/10.1109/TFUZZ.2021.3070125
[34] X. Xiao, Z. Lei, Mode-dependent IOSS conditions for continuous-time switched nonlinear systems, International Journal of Control, Automatic and Systems, 19(11) (2021), 3580-3587. https://doi.org/10.1007/ s12555-020-0786-x
[35] X. M. Zhang, Q. L. Han, Event-triggered dynamic output feedback control for networked control systems, IET Control Theory and Applications, 8(4) (2014), 226-234. https://doi.org/10.1049/iet-cta.2013.0253
[36] D. Zhang, S. K. Nguang, D. Srinivasan, L. Yu, Distributed filtering for discrete-time T-S fuzzy systems with incomplete measurements, IEEE Transactions on Fuzzy Systems, 26(3) (2018), 1459-1471. https://doi.org/10. 1109/TFUZZ.2017.2725228
[37] M. Zhang, P. Shi, C. Shen, Z. G. Wu, Static output feedback control of switched nonlinear systems with actuator faults, IEEE Transactions on Fuzzy Systems, 28(8) (2019), 1600-1609. https://doi.org/10.1109/TFUZZ.2019. 2917177
[38] X. Zhang, Y. Yin, H. Wang, S. He, Finite-time dissipative control for time-delay Markov jump systems with conictype nonlinearities under guaranteed cost controller and quantiser, IET Control Theory and Applications, 15(4) (2021), 489-498. https://doi.org/10.1049/cth2.12031
[39] J. Zhang, F. Zhu, H. R. Karimi, F. Wang, Observer-based sliding mode control for T-S fuzzy descriptor systems with time delay, IEEE Transactions on Fuzzy Systems, 27(10) (2019), 2009-2023. https://doi.org/10.1109/TFUZZ. 2019.2893220
[40] Z. Zheng, J. Gao, J. Mo, L. Zhang, Q. Zhang, A fast self-correction method for nonlinear sinusoidal fringe images in 3-D measurement, IEEE Transactions on Instrumentation and Measurement, 70 (2021), 1-9. https://doi.org/ 10.1109/TIM.2021.3066535
[41] Q. Zheng, S. Xu, B. Du, Quantized guaranteed cost output feedback control for nonlinear networked control systems and its applications, IEEE Transactions on Fuzzy Systems, 30(7) (2021), 2402-2411. https://doi.org/10.1109/ TFUZZ.2021.3082691
[42] G. Zong, H. Ren, H. R. Karimi, Event-triggered communication and annular finite-time H∞ filtering for networked switched systems, IEEE Transactions on Cybernetics, 51(1) (2020), 309-317. https://doi.org/10.1109/TCYB. 2020.3010917 | ||
آمار تعداد مشاهده مقاله: 133 تعداد دریافت فایل اصل مقاله: 109 |