
تعداد نشریات | 32 |
تعداد شمارهها | 749 |
تعداد مقالات | 7,266 |
تعداد مشاهده مقاله | 11,991,092 |
تعداد دریافت فایل اصل مقاله | 8,173,238 |
تعیین دامنه تغییرات مقدار پسزمینه طبیعی متغیرهای فیزیکوشیمیایی در منابع آب شرب و ارزیابی ریسک سلامت انسان | ||
مخاطرات محیط طبیعی | ||
مقاله 6، دوره 13، شماره 41 - شماره پیاپی 3، مهر 1403، صفحه 61-84 اصل مقاله (2.68 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22111/jneh.2024.46862.1990 | ||
نویسنده | ||
وهاب امیری* | ||
دانشیار هیدروژئولوژی، گروه زمینشناسی، دانشگاه یزد | ||
چکیده | ||
هدف از انجام این مطالعه، شناسایی نقش عوامل طبیعی و انسانی در کنترل ترکیب شیمیایی منابع آب شرب شهری و روستایی شهرستانهای بوئین-میاندشت و فریدونشهر در استان اصفهان است. در اغلب مطالعات، منابع احتمالی متعددی برای متغیرهای فیزیکوشیمیایی آب شرب مطرح شده است. بنابراین، تعیین مقدار و دامنه تغییرات غلظت پس زمینه طبیعی (NBL) این متغیرها میتواند در بهبود مدیریت منابع آب و جلوگیری از عواقب ناگوار برای سلامت ساکنین از طریق مصرف آب بسیار موثر باشد. بنابراین، با استفاده از روشهای آزمون رفع داده پرت تکراری (Iterative 2σ)، تابع توزیع محاسباتی (CDF) و آزمون گربز تکراری (IGT)، NBL 11 متغیر فیزیکوشیمیایی شامل EC، TDS، SO4، F، Cl، NO3، HCO3، Ca، K، Mg، Na محاسبه شده است. فرایند پیشانتخاب (PS) دسته دادهها بر اساس NO3 و Cl انجام شده است. به دلیل عدم ایجاد توزیع نرمال توسط روشهای احتمالاتی Iterative 2σ و CDF، مقدار NBL برای متغیرهای SO4، NO3 و Na در دسته داده بوئین-میاندشت و متغیرهای EC، TDS، NO3 و Na در دسته داده فریدونشهر را نمیتوان با استفاده از آنها محاسبه کرد. بنابراین، برای این متغیرها از روش قطعی (95 درصد دادههای باقیمانده) به عنوان NBL استفاده شده است. محاسبات نشان میدهد که مقادیر NBL تعیین شده توسط روش IGT بزرگتر از مقادیر بدست آمده از روشهای Iterative 2σ وCDF است. ارزیابی ریسک سلامت انسان از طریق مصرف آب شرب و تماس پوستی با تأکید بر غلظت نیترات نشان میدهد که اغلب نمونه های مورد مطالعه در رده بیخطر و کمخطر قرار دارند و این بیانگر کیفیت بسیار خوب نمونهها برای مصرف شرب است. | ||
کلیدواژهها | ||
آب شرب؛ سطح پس زمینه طبیعی؛ متغیرهای فیزیکوشیمیایی؛ روش آماری؛ ارزیابی ریسک سلامت انسان | ||
مراجع | ||
Amiri, V., Ali, S., Sohrabi, N. (2023a). Estimating the spatio-temporal assessment of GRACE/GRACE-FO derived groundwater storage depletion and validation with in-situ water quality data (Yazd province, central Iran). Journal of Hydrology, 620, 129416. https://doi.org/10.1016/j.jhydrol.2023.129416 Amiri, V., Sohrabi, N., Lak, R., Tajbakhsh, G. (2024). Estimation of natural background levels of heavy metals and major variables in groundwater to ensure the sustainable supply of safe drinking water in Fereidan, Iran. Environment, Development and Sustainability, 26, pp 19807-19832. https://doi.org/10.1007/s10668-023-03438-z Amiri, V., Ali, S., Sohrabi, N., Amiri, F. (2023b). Hydrogeochemical evaluation with emphasis on nitrate and fluoride in urban and rural drinking water resources in western Isfahan province, central Iran. Environmental Science and Pollution Research, 30, pp 108720-108740. https://doi.org/10.1007/s11356-023-30001-0 Amiri, V., Berndtsson, R. (2020). Fluoride Occurrence and Human Health Risk from Groundwater Use at the West Coast of Urmia Lake, Iran. Arabian Journal of Geosciences, 13, 921 https://doi.org/10.1007/s12517-020-05905-7 Amiri, V., Nakhaei, M., Lak, R., Li, P. (2021). An integrated statistical-graphical approach for the appraisal of the natural background levels of some major ions and potentially toxic elements in the groundwater of Urmia aquifer, Iran. Environmental Earth Sciences, 80, 432. https://doi.org/10.1007/s12665-021-09733-0 Amiri, V., Sohrabi, N., Li, P., Amiri, F. (2023c). Groundwater Quality for Drinking and Non-Carcinogenic Risk of Nitrate in Urban and Rural Areas of Fereidan, Iran. Exposure and Health, 15, pp 807-823. https://doi.org/10.1007/s12403-022-00525-w Biddau, R., Cidu, R., Lorrai, M., Mulas, M.G. (2017). Assessing background values of chloride, sulfate, and fluoride in groundwater: A geochemical-statistical approach at a regional scale. Journal of Geochemical Exploration, 181, pp 243-255. https://doi.org/10.1016/j.gexplo.2017.08.002 Bulut, O.F., Duru, B., Çakmak, O., Günhan, O., Dilek, F.B., Yetis, U. (2020). Determination of groundwater threshold values: A methodological approach. Journal of Cleaner Production, 253, 120001. https://doi.org/10.1016/j.jclepro.2020.120001 Cruz, J.V., Andrade, C. (2015). Natural background groundwater composition in the Azores archipelago (Portugal): a hydrogeochemical study and threshold value determination. Science of the Total Environment, 520, pp 127-135. https://doi.org/10.1016/j.scitotenv.2015.03.057 De Miguel, E., Iribarren, I., Chacon, E., Ordonez, A., Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66, pp 505-513. https://doi.org/10.1016/j.chemosphere.2006.05.065 Duan, M., Du, X., Peng, W., Zhang, S., Yan, L. (2019). A Revised Method of Surface Water Quality Evaluation Based on Background Values and Its Application to Samples Collected in Heilongjiang Province, China. Water, 11, 1057. https://doi.org/10.3390/w11051057 Ducci, D., De Melo, M. T. C., Preziosi, E., Sellerino, M., Parrone, D., Ribeiro, L. (2016). Combining natural background levels (NBLs) assessment with indicator kriging analysis to improve groundwater quality data interpretation and management. Science of The Total Environment, 569-570, pp 569-584. https://doi.org/10.1016/j.scitotenv.2016.06.184 Edmunds, W.M., Shand, P., Hart, P., Ward, R.S. (2003). The natural (baseline) quality of groundwater: a UK pilot study. Science of the Total Environment, 310(1-3), pp 25-35. https://doi.org/10.1016/s0048-9697(02)00620-4 European Community (2006). Groundwater directive 2006/118/CE. Directive of the European Parliament and the Council on the Protection of Groundwater Against Pollution and Deterioration, OJ L372, 27/12/2006, pp 19–31. Falkenmark, M. (2005). Water Usability Degradation. Water International, 30(2), pp 136-146. https://doi.org/10.1080/02508060508691854 Gao, Y., Qian, H., Huo, C., Chen, J., Wang, H. (2020a). Assessing natural background levels in shallow groundwater in a large semiarid Drainage Basin. Journal of Hydrology, 584, 124638. https://doi.org/10.1016/j.jhydrol.2020.124638 Gao, Y., Qian, H., Wang, H., Chen, J., Ren, W., Yang, F. (2020b). Assessment of background levels and pollution sources for arsenic and fluoride in the phreatic and confined groundwater of Xi'an City, Shaanxi, China. Environmental Science and Pollution Research, 27, pp 34702-34714. https://doi.org/10.1007/s11356-019-06791-7 Giri, S., Singh, A.K. (2015). Human health risk assessment via drinking water pathway due to metal contamination in the groundwater of Subarnarekha River Basin, India. Environmental Monitoring and Assessment, 187(3), pp 1-14. https://doi.org/10.1007/s10661-015-4265-4 Griffioen, J., Passier, H.F., Klein, J. (2008). Comparison of selection methods to deduce natural background levels for groundwater units. Environmental Science & Technology, 42(13), pp 4863-4869. https://doi.org/10.1021/es7032586 Huan, H., Hu, L., Yang, Y., Jia, Y., Lian, X., Ma, X., Jiang, Y., Xi, B. (2020). Groundwater nitrate pollution risk assessment of the groundwater source field based on the integrated numerical simulations in the unsaturated zone and saturated aquifer. Environment International, 137, 105532 https://doi.org/10.1016/j.envint.2020.105532 Huang, G., Pei, L., Li, L., Liu, C. (2022a). Natural background levels in groundwater in the Pearl River Delta after the rapid expansion of urbanization: A new pre-selection method. Science of the Total Environment, 813, 151890. https://doi.org/10.1016/j.scitotenv.2021.151890 Jandu, A., Malik, A., Dhull, S.B. (2021). Fluoride and nitrate in groundwater of rural habitations of semiarid region of northern Rajasthan, India: a hydrogeochemical, multivariate statistical, and human health risk assessment perspective. Environmental Geochemistry and Health, 43, pp 3997-4026. https://doi.org/10.1007/s10653-021-00882-6 Jang, C.S., Liu, C.W., Lin, K.H., Huang, F.M., Wang, S.W. (2006). Spatial analysis of potential carcinogenic risks associated with ingesting arsenic in aquacultural tilapia (Oreochromis Mossambicus) in Blackfoot disease hyperendemic areas. Environmental Science & Technology, 40(5), pp 1707-1713. https://doi.org/10.1021/es051875m Karunanidhi, D., Aravinthasamy, P., Priyadarsi, D.R., Praveenkumar, R.M., Prasanth, K., Selvapraveen, S., Thowbeekrahman, A., Subramani, T., Srinivasamoorthy, K. (2020). Evaluation of non-carcinogenic risks due to fluoride and nitrate contaminations in the groundwater of an urban part (Coimbatore region) of south India. Environmental Monitoring and Assessment, 192, 102. https://doi.org/10.1007/s10661-019-8059-y. Karunanidhi, D., Aravinthasamy, P., Subramani, T., Kumar, M. (2021). Human health risks associated with multipath exposure of groundwater nitrate and environmentally friendly actions for quality improvement and sustainable management: a case study from Texvalley (Tiruppur region) of India. Chemosphere, 265, 129083. https://doi.org/10.1016/j.chemosphere.2020.129083 Kaur, L., Rishi, M.S., Siddiqui, A.U. (2020). Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India. Environmental Pollution, 259. https://doi.org/10.1016/j.envpol.2019.113711 Kelly, W.R., Panno S.V. (2008). Some Considerations in Applying Background Concentrations to Ground Water Studies. Ground Water, 46, 6. https://doi.org/10.1111/j.1745-6584.2008.00467.x Kim, K-H., Yun, S-T., Kim, H-K., Kim, J-W. (2015). Determination of natural backgrounds and thresholds of nitrate in South Korean groundwater using model-based statistical approaches. Journal of Geochemical Exploration, 148, pp 196-205. https://doi.org/10.1016/j.gexplo.2014.10.001 Li, S., Zhang, Q. (2010). Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China. Journal of Hazardous Materials, 181, pp 1051-1058. https://doi.org/10.1016/j.jhazmat.2010.05.120 Li, X. et al. (2018). Evaluation and determination of soil remediation schemes using a modified AHP model and its application in a contaminated coking plant. Journal of Hazardous Materials, 353, pp 300-311. https://doi.org/10.1016/j.jhazmat.2018.04.010 Linhua, S. (2019). Calculating Environmental Background Value: A Comparative Study of Statistical Versus Spatial Analyses. Polish Journal of Environmental Studies, 28(1), pp 197-203. Lonati, G., Zanoni, F. (2012). Probabilistic health risk assessment of carcinogenic emissions from an MSW gasification plant. Environment International, 44,80-91. https://doi.org/10.1016/j.envint.2012.01.013 Masetti, M., Poli, S., Sterlacchini, S., Beretta, G.P., Facchi, A. (2008). Spatial and statistical assessment of factors influencing nitrate contamination in groundwater. Journal of Environmental Management, 86, pp 272-281. https://doi.org/10.1016/j.jenvman.2006.12.023 Matschullat, J., Ottenstein, R., Reimann, C. (2000). Geochemical background Can we calculate it? Environmental Geology, 39(9), pp 990-1000. https://doi.org/10.1007/s002549900084 Mencio, A., Mas-Pla, J., Otero, N., Regas, O., Boy-Roura, M., Puig, R., Bach, J., Domenech, C., Zamorano, M., Brusi, D., Folch, A. (2016). Nitrate pollution of groundwater; all right…, but nothing else? Science of the Total Environment, 539, pp 241-251.https://doi.org/10.1016/j.scitotenv.2015.08.151 Molinari, A., Guadagnini, L., Marcaccio, M., Guadagnini, A. (2019). Geostatistical Muller, D., Blum, A., Hart, A., Hookey, J., Kunkel, R., Scheidleder, A., Tomlin, C., Wendland, F. (2006). Final proposal for a methodology to set up groundwater threshold values in Europe. Report to the EU project “BRIDGE” 2006, Deliverable D18. Nakic, Z., Posavec, K., Bacani, A. (2007). A visual basic spreadsheet macro for geochemical background analysis. Ground Water, 45(5), pp 642-647. https://doi.org/10.1111/j.1745-6584.2007.00325.x Parrone, D., Ghergo, S., Preziosi, E. (2019). A multi-method approach for the assessment of natural background levels in groundwater. Science of the Total Environment, 659, pp 884-894. https://doi.org/10.1016/j.scitotenv.2018.12.350 Postma, D., Boesen, C., Kristiansen, H., Larsen, F. (1991). Nitrate reduction in an unconfined sandy aquifer: Water chemistry, reduction processes, and geochemical modeling. Water Resources Research, 27, pp 2027-2045. https://doi.org/10.1029/91WR00989 Preziosi, E., Parrone, D., Del Bon, A., Ghergo, S. (2014). Natural background level assessment in groundwaters: probability plot versus pre-selection method. Journal of Geochemical Exploration, 143, pp 43-53. https://doi.org/10.1016/j.gexplo.2014.03.015 Rahman, A., Mondal, N.C., Fauzia, F. (2021). Arsenic enrichment and its natural background in groundwater in the proximity of active floodplains of Ganga River, Northern India. Chemosphere, 265, 129096. https://doi.org/10.1016/j.chemosphere.2020.129096 Reimann, C., Garrett, R.G. (2005). Geochemical background-concept and reality. Science of the Total Environment, 350, pp 12-27. https://doi.org/10.1016/j.scitotenv.2005.01.047 Rodrigues, A.S.L., Malafaia, G., Costa, A.T., Júnior, H.A.N. (2013). Background values for chemical elements in sediments of the Gualaxo Do Norte River Basin, Mg, Brazil. Revista De Ciências Ambientais, Canoas, 7, 2 Rotiroti, M., Di Mauro, B., Fumagalli, L., Bonomi, T. (2015). COMPSEC, a new tool to derive natural background levels by the component separation approach: application in two different hydrogeological contexts in northern Italy. Journal of Geochemical Exploration, 158, pp 44-54. https://doi.org/10.1016/j.gexplo.2015.06.017 Saha, N., Safiur Rahman, M., Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management, 185, pp 70-78. https://doi.org/10.1016/j.jenvman.2016.10.023 Salomão, G.N., Dall'Agnol, R., Sahoo, P.K., Júnior, J.S.F., Silva, M.S., Filho, P.W.M.S., Berrêdo, J.F., Nascimento Junior, W.R., Costa, M.F. (2018). Geochemical distribution and threshold values determination of heavy metals in stream water in the sub-basins of Vermelho and Sororó rivers, Itacaiúnas River watershed, Eastern Amazon, Brazil. Geochimica Brasiliensis, 32(2), pp 180-198 https://doi.org/10.21715/GB2358-2812.2018322180 Salomão, G.N., Figueiredo, M.A., Dall'Agnol, R., Sahoo, P.K., Filho, C.A.M., Costa, M.F., Angélica, R.S. (2019). Geochemical mapping and background concentrations of iron and potentially toxic elements in active stream sediments from Carajás, Brazil –implication for risk assessment. Journal of South American Earth Sciences 92, pp 151-166 https://doi.org/10.1016/j.jsames.2019.03.014 Sellerino, M., Forte, G., Ducci, D. (2019). Identification of the natural background levels in the Phlaegrean fields groundwater body (Southern Italy). Journal of Geochemical Exploration, 200, pp 181-192. https://doi.org/10.1016/j.gexplo.2019.02.007 Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika 52, 591 Sohrabi, N., Kalantari, N., Amiri, V., Saha, N., Berndtsson, R., Bhattacharya, P., Ahmad, A. (2021). A probabilistic-deterministic analysis of human health risk related to the exposure to potentially toxic elements in groundwater of Urmia coastal aquifer (NW of Iran) with a special focus on arsenic speciation and temporal variation. Stochastic Environmental Research and Risk Assessment, 35, pp 1509-1528. https://doi.org/10.1007/s00477-020-01934-6 Solgi, E., Jalili, M. (2021). Zoning and human health risk assessment of arsenic and nitrate contamination in groundwater of agricultural areas of the twenty-two villages with geostatistics (Case study: Chahardoli Plain of Qorveh, Kurdistan Province, Iran). Agricultural Water Management, 255, 107023. https://doi.org/10.1016/j.agwat.2021.107023 Subba Rao, N., Srihari, Ch., Deepthi Spandana, B., Sravanthi, M., Kamalesh, T., Abraham Jayadeep, V. (2019). Comprehensive understanding of groundwater quality and hydrogeochemistry for the sustainable development of a suburban area of Visakhapatnam, Andhra Pradesh, India. Human and Ecological Risk Assessment: An International Journal, 25(1-2), pp 52–80. https://doi.org/10.1080/10807039.2019.1571403 Tian, R., Wu, J. (2019). Groundwater quality appraisal by improved set pair analysis with game theory weightage and health risk estimation of contaminants for Xuecha drinking water source in a loess area in northwest China. Human and Ecological Risk Assessment, 25(1-2), pp 176-190. https://doi.org/10.1080/10807039.2019.1573035 Urresti-Estala, B., Carrasco-Cantos, F., Vadillo-Perez, I., Jimenez-Gavilan, P. (2013). Determination of background levels on water quality of groundwater bodies: a methodological proposal applied to a Mediterranean River Basin. Journal of Environmental Management, 117, pp 121-130. https://doi.org/10.1016/j.jenvman.2012.11.042 USEPA (2011). Exposure Factors Handbook, 2011 edition. U.S. 2011 Editi. Ed. USEPA (2014). Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors-OSWER Directive 9200, vols. 1-120, p. 6 USEPA (2019). Regional screening levels (RSLs)-generic tables. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables. Accessed 20 February 2020 Wendland, F., Hannappel, S., Kunkel, R., Schenk, R., Voigt, H.J., Wolter, R. (2005). A procedure to define natural groundwater conditions of groundwater bodies in Germany. Water Science & Technology, 51(3-4), pp 249-257. https://doi.org/10.2166/wst.2005.0598 World Health Organization (WHO) (2011). Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva. WHO (2017). Guidelines for Drinking Water Quality: Fourth Edition Incorporating the First Addendum. World Health Organization, Geneva. Yan, Y., Han, L., Yu, R-L., Hu, G-R., Zhang, W-F., Cui, J-Y., Yan, Y., Huang, H-B. (2020). Background determination, pollution assessment, and source analysis of heavy metals in estuarine sediments from Quanzhou Bay, southeast China. Catena, 187, 104322. https://doi.org/10.1016/j.catena.2019.104322 Zeng, G., Liang, J., Guo, S., Shi, L., Xiang, L., Li, X., Du, C. (2009). Spatial analysis of human health risk associated with ingesting manganese in Huangxing Town, Middle China. Chemosphere, 77(3), pp 368-375. https://doi.org/10.1016/j.chemosphere.2009.07.020. | ||
آمار تعداد مشاهده مقاله: 290 تعداد دریافت فایل اصل مقاله: 118 |