
تعداد نشریات | 33 |
تعداد شمارهها | 772 |
تعداد مقالات | 7,486 |
تعداد مشاهده مقاله | 12,490,792 |
تعداد دریافت فایل اصل مقاله | 8,482,315 |
Radiation Improvement of Low-Profile Microstrip Antenna by Utilizing AMC Surface for MIMO and Wireless Systems | ||
International Journal of Industrial Electronics Control and Optimization | ||
مقاله 3، دوره 8، شماره 2، شهریور 2025، صفحه 129-136 اصل مقاله (1.14 M) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22111/ieco.2024.48644.1561 | ||
نویسندگان | ||
Hosein Malekpoor* 1؛ Mehdi Hamidkhani2 | ||
1Department of Electrical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran | ||
2Department of Electrical Engineering, Isfahan (khorasgan) Branch, Islamic Azad University, Isfahan, Iran | ||
چکیده | ||
A compact microstrip antenna by applying a parasitic artificial magnetic conductor (AMC), is proposed for facilitating 4G and 5G wireless communications. The antenna design includes microstrip dipoles fed by a T-shaped feedline. Notably, the antenna achieves a measured bandwidth of 5.32-6.73 GHz (with S11≤ -10 dB). To enhance performance, a proposed parasitic AMC reflector is integrated into the antenna structure. Incorporating an 8×8 AMC array, the antenna extends its -10 dB measured bandwidth from 4.55 to 6.83 GHz, catering to both 4G and 5G communication standards. Comparative analysis with an antenna lacking AMC reveals a reduced size of 34%, alongside a notable gain of 8 dBi and uni-directional radiation patterns. The efficiency and gain of all elements are approximately 90% and 8 dBi, respectively. Moreover, the introduction of an AMC unit cell, well-founded on a parasitic patch, resonates at 6.12 GHz with a bandwidth extending from 5.25 to 7.15 GHz. Furthermore, the offered equivalent transmission line model of the antenna with the AMC is demonstrated, yielding desirable results. This model accurately predicts the input impedance of the antenna with AMC across a broad frequency band ranging from 4.61 to 6.72 GHz. This comprehensive study demonstrates the effectiveness and versatility of the offered model in characterizing the operating band's behavior of the antenna across a wide frequency band to facilitate its design and optimization for various applications. | ||
کلیدواژهها | ||
Artificial Magnetic Conductor (AMC)؛ Printed Antenna؛ MIMO؛ Wideband؛ WLAN/WiMAX | ||
مراجع | ||
[1] H. Malekpoor and S. Jam, “Design, analysis, and modeling of miniaturized multi-band patch arrays using mushroomtype electromagnetic band gap structures,” International Journal of RF and Microwave Computer-Aided Engineering., vol. 28, no. 6, pp. 1–13, 2018.
[2] F. Kazemi, “A Compact Antenna with Dual Polarization for Mobile and Wireless Communication,” International Journal of Industrial Electronics, Control and Optimization, vol. 6, pp. 73-82, 2023. [3] S. Jam and H. Malekpoor, “Compact 1×4 patch antenna array by means of EBG structures with enhanced bandwidth”, Microw. Opt. Technol. Lett, vol. 58, no. 12, pp. 2983-2989, 2016. [4] A. A. Althuwayb, "Enhanced radiation gain and efficiency of a metamaterial inspired wideband microstrip antenna using substrate integrated waveguide technology for sub-6 GHz wireless communication systems", Microw Opt Technol Lett, Vol. 63, no. 7, pp 1892-1898, July 2021. [5] A. Foroozesh, and L. Shafai, “Effects of artificial magnetic conductors in the design of low-profile high-gain planar antennas with high-permittivity dielectric superstrate,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 10-13, 2009. [6] Z. F. Dai, Y. Pan, J. J. Huang, L. H. Ye, J. F. Li, H. Jiang, “Low-Profile Broadband Dual-Polarized Dipole Antenna with AMC Reflector,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1–5, 2024. [7] C. Bajaj, D. K. Upadhyay, S. Kumar, B. K. Kanaujia, “GPS-Integrated RFID Antenna With AMC Backing for IoT-Based Sensing and Tracking Applications,” IEEE Trans. Antennas Propag., vol. 72, no. 2, pp. 1929 - 1934, 2024. [8] J. M. Bell, M. F. Iskander, and J. J. Lee, “Ultrawideband hybrid EBG/ferrite ground plane for low-profile array antennas,” IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 4–12, 2007. [9] D. Nashaat, H. A. Elsadek, E. A. Abdallah, M. F. Iskander, and H. M. E. Hennawy, “Ultrawide bandwidth 2×2 microstrip patch array antenna using electromagnetic bandgap structure (EBG),” IEEE Trans. Antennas Propag., vol. 59, no. 5, pp. 1528–1534, 2011. [10] S. Barth, and A. K. Iyer, “A Miniaturized Uniplanar Metamaterial-Based EBG for Parallel-Plate Mode Suppression,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 4, pp. 1176–1185, 2016. [11] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alex´opolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2059–2074, 1999. [12] J. Y. Deng, J. Y. Li, L. Zhao, L. X. Guo, “A Dual-Band Inverted-F MIMO Antenna With Enhanced Isolation for WLAN Applications ,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 2270 - 2273, 2017. [13] S. Rajagopal, G. Chennakesavan, D. R. P. Subburaj, R. Srinivasan, and A. Varadhan, “A dual polarized antenna on a novel broadband multilayer Artificial Magnetic Conductor backed surface for LTE/CDMA/GSM base station applications,” AEU- Int. J. Electron. Commun., vol. 80, pp. 73–79, 2017. [14] H. Lee, B. Lee, “Compact Broadband Dual-Polarized Antenna for Indoor MIMO Wireless Communication Systems,” IEEE Trans. Antennas Propag., vol. 64, pp. 766 - 770, 2016. [15] E. Ameri, S. H. Esmaeli, and S. H. Sedighy, “Wide band radar cross section reduction by thin AMC structure,” AEU- Int. J. Electron. Commun., vol. 93, pp. 150–153, 2018. [16] S. Ghosh, T. N. Tran, T. L. Ngoc, “Dual-Layer EBG Based Miniaturized Multi-Element Antenna for MIMO Systems,” IEEE Trans. Antennas Propag., vol. 62, no. 8, pp. 3985 - 3997, 2014. [17] X. Y. Liu, Y. H. Di, H. Liu, Z. Wu, and M. M. Tentzeris, “A Planar Windmill-like Broadband Antenna Equipped with Artificial Magnetic Conductor for Off-Body Communications,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 64 - 67, 2015. [18] S. Yang, Y. Chen, C. Yu, Y. Gong, and F. Tong, “Design of a Low-Profile, Frequency- Reconfigurable, and High Gain Antenna Using a Varactor-Loaded AMC Ground,” IEEE Access, vol. 8, pp. 158635- 158646, 2020. [19] J. Zhu, S. Li, S. Liao; Q. Xue, “Wideband Low-Profile Highly Isolated MIMO Antenna with Artificial Magnetic Conductor,” IEEE Antennas Wireless Propag. Lett., vol. 17 pp. 458 - 462, 2018. [20] A. Ghosh, V. Kumar, G. Sen, S. Das, “Gain enhancement of triple‐band patch antenna by using triple‐band artificial magnetic conductor,” IET Microw. Antennas Propag., vol. 12, no. 8, pp. 1400-1406, 2018. [21] N. Othman, N. A. Samsuri, M. Ka. A. Rahim, and K. Kamardin, “Low specific absorption rate and gain‐enhanced meandered bowtie antenna utilizing flexible dipole‐like artificial magnetic conductor for medical application at 2.4 GHz,” Microw Optical. Tech Lett., vol. 62, pp. 3881-3889, 2020. [22] R. C. Hadarig, M. E. de Cos and F. L. Heras, “Novel miniaturized artificial magnetic conductor,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 174–177, 2013. [23] A. S. d. Sena, D. B. d. Costa, Z. Ding, P. H. J. Nardelli, “Massive MIMO–NOMA Networks With Multi-Polarized Antennas,” IEEE Trans. Wireless Commun.. vol. 18, pp. 5630 - 5642, 2019. [24] Z. Xu, and C. Deng, “High-Isolated MIMO Antenna Design Based on Pattern Diversity for 5G Mobile Terminals,” IEEE Antennas Wireless Propag. Lett., vol. 19 pp. 467 - 471, 2020. [25] Z. Wang, G. Zhang, Y. Yin, and J. Wu, “Design of a DualBand High-Gain Antenna Array for WLAN and WiMAX Base Station,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 1721 - 1724, 2014. [26] S. Jam and H. Malekpoor, “Analysis on wideband patch arrays using unequal arms with equivalent circuit model in X-band”, IEEE Antennas Wireless. Propag. Lett., vol. 15, pp. 1861-1864, 2016. [27] H. Malekpoor, and M. Hamidkhani “Bandwidth and gain improvement for reduced size of stacked microstrip antenna fed by folded triangular patch with half V-shaped slot,” International Journal of RF and Microwave Computer-Aided Engineering., vol. 31, no. 6, e22649, 2021. [28] M. Hamidkhani, H. Malekpoor, and Homayoon Oraizi, “Oscillator Phase-Noise Reduction Using High-Qsc Active Giuseppe Peano Fractal Resonators”, IEEE Microw. and Wireless Components Letters., Vol. 29, pp. 354-356, 2019. [29] J. Joubert, J. C. Vardaxoglou, W. G. Whittow, and J. W. Odendaal, “CPW-fed cavity-backed slot radiator loaded with an AMC reflector,” IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 735–742, 2012. [30] D. Feng, H. Zhai, L. Xi, S. Yang, K. Zhang, D. Yang, “A Broadband Low-Profile Circular-Polarized Antenna on an AMC Reflector,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2840 - 2843, 2017. [31] H. Malekpoor and S. Jam, “Improved radiation performance of low profile printed slot antenna using wideband planar AMC surface,” IEEE Trans. Antennas Propag., vol. 64, no. 11, pp. 4626–4638, 2016. [32] G. Andrea Casula, F. Lestini, F. Paolo Chietera, G. Muntoni, C. Occhiuzzi, L. Catarinucci, R. Colella, G. Montisci, G. Marrocco, “Design of On-Body Epidermal Antenna on AMC Substrate for UHF RFID in Healthcare,” IEEE Trans. Antennas Propag., vol. 72, no. 5, pp. 4023 - 4035, 2024. [33] Y. W. Zhong, G. M. Yang and L. R. Zhong, “Gain enhancement of bow-tie antenna using fractal wideband artificial magnetic conductor ground,” Electron. Lett., vol. 51, no. 4, pp. 315-317, 2015. [34] J. P. Turpin, Q. Wu, D. H. Werner, B. Martin, M. Bray, and E. Lier, “Near-zero-index metamaterial lens combined with AMC metasurface for high-directivity low-profile antennas”, IEEE Trans. Antennas Propag., vol. 62, no. 4, pp. 1928–1936, 2014. [35] H. R. Raad, A. I. Abbosh, H. M. Al-Rizzo and D. G. Rucker, “Flexible and compact AMC based antenna for telemedicine applications,” IEEE Trans. Antennas Propag., vol. 61, no. 2, pp. 524–531, 2013. [36] Y. Luo, X. Wang, N. Yan, W. An, K, Ma, “Low-Profile Wide Axial-Ratio Beamwidth Circularly Polarized Antenna Loaded With Artificial Magnetic Conductor,” IEEE Antennas Wireless Propag. Lett., vol. 23, no. 3, pp. 935 - 939, 2024. [37] W. Luo, P. Wang, “A Compact UHF-RFID Tag Antenna With Embedded AMC for Metallic Objects”, IEEE Antennas Wireless Propag. Lett., vol. 22, no. 4, pp. 873 - 877, 2023. [38] H. Cheng, G. Xiao, X. Wang, “A Low-Profile Wideband Patch Antenna With Modified Parasitic Mushroom Structures on Nonperiodic AMC,” IEEE Antennas Wireless Propag. Lett., vol. 22, no. 4, pp. 719 - 723, 2023. | ||
آمار تعداد مشاهده مقاله: 127 تعداد دریافت فایل اصل مقاله: 148 |