تعداد نشریات | 31 |
تعداد شمارهها | 712 |
تعداد مقالات | 6,941 |
تعداد مشاهده مقاله | 11,411,671 |
تعداد دریافت فایل اصل مقاله | 7,790,962 |
L-convex convergence relation and L-convex ideal-convergence structure | ||
Iranian Journal of Fuzzy Systems | ||
دوره 21، شماره 5، آذر و دی 2024، صفحه 31-49 اصل مقاله (536.04 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2024.49227.8679 | ||
نویسندگان | ||
X.Y. Wu* ؛ Yi-Wei Huang | ||
School of Mathematics and Statistics, Anhui Normal University, Wuhu, China | ||
چکیده | ||
In the framework of L-convex spaces, this paper is aim to study fuzzy convergence structures of L-convex space in a viewpoint of fuzzy relations. For this purpose, L-directed relation is introduced and some of its examples are proposed. Based on this, notions of L-convergence relation and L-convex convergence relation are introduced. It is proved that there is a Galois's connection between the category of L-convergence relation spaces and the category of L-convex enclosed relation spaces. In particular, L-convex convergence relation spaces and L-convex enclosed relation spaces are categorically isomorphic. Also, notions of L-ideal-convergence structure and L-convex ideal-convergence structure are introduced. It is proved that L-convergence relation spaces and L-ideal-convergence spaces are categorically isomorphic. In particular, L-convex convergence relation spaces and L-convex ideal-convergence spaces are categorically isomorphic. | ||
کلیدواژهها | ||
L-convex space؛ L-directed relation؛ L-convergence relation؛ L-convex convergence relation؛ L- ideal-convergence structure؛ L-convex ideal convergence structure | ||
مراجع | ||
[1] M. Berger, Convexity, The American Mathematical Monthly, 8 (1990), 650-678.
[2] M. Changat, H. M. Mulder, G. Sierksma, Convexities related to path properties on graphs, Discrete Mathematics, 290 (2005), 117-131. https://doi.org/10.1016/j.disc.2003.07.014 [3] J. M. Fang, Stratified L-ordered convergence structures, Fuzzy Sets and Systems, 161 (2010), 2130-2149. https: //doi.org/10.1016/j.fss.2010.04.001 [4] S. P. Franklin, Some results on order-convexity, Fuzzy Sets and Systems, 62 (1962), 357-359. https://doi.org/ 10.1080/00029890.1962.11989897 [5] Y. Gao, B. Pang, Subcategories of the category of ⊤-convergence spaces, Hacettepe Journal of Mathematics and Statistics, 53 (2024), 88-106. https://doi.org/10.15672/hujms.1205089 [6] X. C. Han, B. Pang, Convergence structures in L-concave spaces, Iranian Journal of Fuzzy Systems, 21 (2024), 61-80. https://doi.org/10.22111/ijfs.2024.48804.8608 [7] U. H¨ohle, A. P. ˇSostak, Axiomatic foundations of fixed-basis fuzzy topology, in: U. H¨ohle, S.E. Rodabaugh (Eds), Mathematics of Fuzzy Sets: Logic, Topolgoy, and Measure Theory, in: Handbook Series, 3, Kluwer Academic Publishers, Boston, Dordrecht, London, 1999. [8] L. Q. Li, Q. Jin, K. Hu, Lattice-valued convergence associated with CNS spaces, Fuzzy Sets and Systems, 370 (2019), 91-98. https://doi.org/10.1016/j.fss.2018.05.023 [9] C. Y. Liao, X. Y. Wu, L-topological-convex spaces generated by L-convex bases, Open Mathematics, 17 (2019), 1547-1566. https://doi.org/10.1515/math-2019-0133 [10] Y. Maruyama, Lattice-valued fuzzy convex geometry, RIMS Kokyroku, 1641 (2009), 22-37. http://hdl.handle. net/2433/140587 [11] H. M. Mulder, The structure of median graphics, Discrete Mathematics, 24 (1978), 197-204. https://doi.org/ 10.1016/0012-365X(78)90199-1 [12] B. Pang, On (L,M)-fuzzy convergence spaces, Fuzzy Sets and Systems, 238 (2014), 46-70. https://doi.org/10. 1016/j.fss.2013.07.007 [13] B. Pang, Categorical properties of L-fuzzifying convergence spaces, Filomat, 32 (2018), 4021-4036. https://doi. org/10.2298/FIL1811021P [14] B. Pang, Convergence structures in M-fuzzifying convex spaces, Quaestiones Mathematicae, 43 (2020), 1541-1561. https://doi.org/10.2989/16073606.2019.1637379 [15] B. Pang, Hull operators and interval operators in (L,M)-fuzzy convex spaces, Fuzzy Sets and Systems, 405 (2021), 106-127. https://doi.org/10.1016/j.fss.2019.11.010 [16] B. Pang, Quantale-valued convex structures as lax algebras, Fuzzy Sets and Systems, 473 (2023), 108737. https: //doi.org/10.1016/j.fss.2023.108737 [17] B. Pang, Fuzzy convexities via overlap functions, IEEE Transactions on Fuzzy Systems, 31 (2023), 1071-1082. https://doi.org/10.1109/TFUZZ.2022.3194354 [18] B. Pang, F. G. Shi, Subcategories of the category of L-convex spaces, Fuzzy Sets and Systems, 313 (2017), 61-74. https://doi.org/10.1016/j.fss.2016.02.014 [19] B. Pang, F. G. Shi, Convenient properties of stratified L-convergence tower spaces, Filomat, 33 (2019), 4811-4825.
[20] T. Rapcsak, Geodesic convexityin nonlinear optimization, Journal of Optimization Theory and Applications, 69 (1991), 169-183. https://doi.org/10.1007/BF00940467 [21] C. Shen, F. G. Shi, Characterizations of L-convex spaces via domain theory, Fuzzy Sets and Systems, 380 (2020), 44-63. https://doi.org/10.1016/j.fss.2019.02.009 [22] C. Shen, F. G. Shi, X. C. Zhao, Scott quasi-metric and Scott quasi-uniformity based on pointwise quasi-metrics, Fuzzy Sets and Systems, 492 (2024), 109070. https://doi.org/10.1016/j.fss.2024.109070 [23] F. G. Shi, L-fuzzy interiors and L-fuzzy closures, Fuzzy Sets and Systems, 160 (2009), 1218-1232. https://doi. org/10.1016/j.fss.2008.09.002 [24] F. G. Shi, E. Q. Li, The restricted hull operators of M-fuzzifying convex structures, Journal of Intelligent and Fuzzy Systems, 30 (2015), 409-421. https://doi.org/10.3233/ifs-151765 [25] F. G. Shi, B. Pang, Categories isomorphic to the category of L-fuzzy closure system spaces, Iranian Journal of Fuzzy Systems, 10 (2013), 127-146. https://doi.org/10.1109/REV.2014.6784270 [26] Y. Shi, F. G. Shi, Characterizations of L-topologies, Journal of Intelligent and Fuzzy Systems, 34 (2018), 613-623. https://doi.org/10.3233/JIFS-17845 [27] Y. Shi, F. G. Shi, (L,M)-fuzzy internal relations and (L,M)-fuzzy enclosed relations, Journal of Intelligent and Fuzzy Systems, 36 (2019), 5153-5165. https://doi.org/10.3233/jifs-172129 [28] F. G. Shi, Z. Y. Xiu, A new approach to the fuzzification of convex structures, Journal of Applied Mathematics, 2014 (2014), 1-12. https://doi.org/10.1155/2014/249183 [29] F. G. Shi, Z. Y. Xiu, (L,M)-fuzzy convex structures, Journal of Nonlinear Sciences and Applications, 10 (2017), 3655-3669. https://doi.org/10.22436/jnsa.010.07.25 [30] M. L. J. Van de Vel, Binary convexities and distributive lattices, Proceedings of the London Mathematical Society, 48 (1984), 1-33. https://doi.org/10.1112/plms/s3-48.1.1 [31] M. L. J. Van de Vel, Theory of convex structures, Noth-Holland, Amsterdam, 1993.
[32] K. Wang, F. G. Shi, M-fuzzifying topological convex spaces, Iranian Journal of Fuzzy Systems, 15 (2018), 159-174. https://doi.org/10.22111/IJFS.2018.4373 [33] X. Y.Wu, B. Davvaz, S. Z. Bai, On M-fuzzifying convex matroids and M-fuzzifying independent structures, Journal of Intelligent and Fuzzy Systems, 33 (2017), 269-280. https://doi.org/10.3233/JIFS-161589 [34] X. Y. Wu, E.Q. Li, Category and subcategories of (L,M)-fuzzy convex spaces, Iranian Journal of Fuzzy Systems, 15 (2019), 129-146. https://doi.org/10.22111/ijfs.2019.4492 [35] X. Y. Wu, C. Y. Liao, (L,M)-fuzzy topological-convex spaces, Filomat, 33 (2019), 6435-6451. https://doi.org/ 10.2298/FIL1919435W [36] X. Y.Wu, C. Y. Liao, Y. H. Zhao, L-topological derived neighborhood relations and L-topological derived remotehood relations, Filomat, 36 (2022), 1433-1450. https://doi.org/10.2298/FIL1919435W [37] X. Y. Wu, Q. Liu, C. Y. Liao, Y. H. Zhao, L-topological derived internal (enclosed) relation spaces, Filomat, 35 (2021), 2497-2516. https://doi.org/10.2298/FIL2108497W [38] X. Y. Wu, Y. Shi, (L,M)-fuzzy topological derived internal relations and (L,M)-fuzzy topological derived enclosed relations, Iranian Journal of Fuzzy Systems, 19 (2022), 89-106. https://doi.org/10.22111/IJFS.2022.6945 [39] Z. Y. Xiu, Q. H. Li, Degrees of L-continuity for mappings between L-topological spaces, Mathematics, 7 (2019), 1013-1028. https://doi.org/10.3390/math7111013 [40] Z. Y. Xiu, Q. H. Li, B. Pang, Fuzzy convergence structures in the framework of L-convex spaces, Iranian Journal of Fuzzy Systems, 17 (2020), 139-150. https://doi.org/10.22111/IJFS.2020.5411 [41] Z. Y. Xiu, B. Pang, Base axioms and subbase axioms in M-fuzzifying convex spaces, Iranian Journal of Fuzzy Systems, 15 (2018), 75-87. https://doi.org/10.22111/IJFS.2018.3760 [42] Z. Y. Xiu, F. G. Shi, M-fuzzifying interval spaces, Iranian Journal of Fuzzy Systems, 14 (2017), 145-162. https: //doi.org/10.22111/IJFS.2017.3050 [43] S. J. Yang, F. G. Shi, M-fuzzifying independent spaces, Journal of Intelligent and Fuzzy Systems, 34 (2018), 11-21. https://doi.org/10.3233/JIFS-162150 [44] W. Yao, On many-valued stratified L-fuzzy convergence spaces, Fuzzy Sets and Systems, 159 (2008), 2503-2519. https://doi.org/10.1016/j.fss.2008.03.003 [45] L. Zhang, B. Pang, Convergence structures in (L,M)-fuzzy convex spaces, Filomat, 37 (2023), 2859-2877. https: //doi.org/10.2298/FIL2309859Z [46] L. Zhang, B. Pang, A new approach to lattice-valued convergence groups via ⊤-filters, Fuzzy Sets and Systems, 455 (2023), 198-221. https://doi.org/10.1016/j.fss.2022.06.026 | ||
آمار تعداد مشاهده مقاله: 37 تعداد دریافت فایل اصل مقاله: 53 |