تعداد نشریات | 31 |
تعداد شمارهها | 712 |
تعداد مقالات | 6,941 |
تعداد مشاهده مقاله | 11,411,752 |
تعداد دریافت فایل اصل مقاله | 7,791,025 |
A Dual Measure of Fuzzy Entropy: Fuzzy Extropy | ||
Iranian Journal of Fuzzy Systems | ||
دوره 21، شماره 5، آذر و دی 2024، صفحه 71-88 اصل مقاله (12.63 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2024.49275.8693 | ||
نویسندگان | ||
Kar Samarjit* 1؛ Bikash Koli Roy2؛ Manas Kumar Mohanty2 | ||
1NIT Durgapur, INDIA | ||
2NIT Durgapur | ||
چکیده | ||
In this paper, we introduce a new concept of fuzzy extropy measure, which can help to measure any system's uncertainty or fuzziness in parallel to fuzzy entropy. Fuzzy extropy can be considered as a dual concept of fuzzy entropy. Additionally, we provide ideas for higher-order fuzzy extropy and hybrid fuzzy extropy. Then, we introduce concepts of credibilistic extropy for both discrete and continuous fuzzy variables. Furthermore, we have provided examples of these concepts and compared the extropy results with existing fuzzy entropy results. Finally, the validation through simulation studies offers a visual representation of extropy parameters and density distributions, providing empirical insights into the proposed measures' behavior and enhancing their credibility and understanding. | ||
کلیدواژهها | ||
uncertainty measure؛ fuzzy extropy؛ fuzzy higher-order extropy؛ fuzzy hybrid extropy؛ credibilistic extropy | ||
مراجع | ||
[1] V. Arya, S. Kumar, Knowledge measure and entropy: A complementary concept in fuzzy theory, Granular Computing, 6(3) (2021), 631-643. https://doi.org/10.1007/s41066-020-00221-7 [2] N. Balakrishnan, F. Buono, M. Longobardi, On weighted extropies, Communications in Statistics Theory and Methods, 51(18) (2022), 6250-6267. https://doi.org/10.1080/03610926.2020.1860222 [3] N. Balakrishnan, F. Buono, M. Longobardi, On Tsallis extropy with an application to pattern recognition, Statistics and Probability Letters, 180 (2022), 109241. https://doi.org/10.1016/j.spl.2021.109241 [4] F. Buono, M. Longobardi, A dual measure of uncertainty: The deng extropy, Entropy, 22 (2020), 582. https: //doi.org/10.3390/e22050582 [5] L. Chen, Y. Deng, Entropy of random permutation set, Communications in Statistics-Theory and Methods, 53(11) (2024), 4127-4146. https://doi.org/10.1080/03610926.2023.2173975 [6] A. Deluca, S. Tennini, A definition of nonprobabilistic entropy in the setting of fuzzy sets theory, Information and Control, 20 (1972), 301-312. https://doi.org/10.1016/B978-1-4832-1450-4.50020-1 [7] A. P. Dempster, Upper and lower probabilities induced by a multivalued mapping, In Classic Works of the Dempster- Shafer Theory of Belief Functions, (2008), 57-72. https://doi.org/10.1007/978-3-540-44792-4_3. [8] Y. Deng, Deng entropy, Chaos, Solitons and Fractals, 91 (2016), 549-53. https://doi.org/10.1016/j.chaos. 2016.07.014 [9] Y. Deng, Information volume of mass function, International Journal of Computers Communications and Control, 15(6) (2020), 3983. https://doi.org/10.15837/ijccc.2020.6.3983 [10] D. Dubois, H. Prade, A class of fuzzy measures based on triangular norms, International Journal of General Systems, 8 (1982), 43-61. https://doi.org/10.1080/03081078208934833 [11] D. Dubois, H. Prade, Th´eorie des Possibilit´es, Paris, France: Masson, (1985). https://hal.science/ hal-04058264 [12] N. Ebrahimi, How to measure uncertainty in the residual lifetime distribution, Sankhy´a: The Indian Journal of Statistics, 58 (1996), 48-56. https://www.jstor.org/stable/i25051076 [13] O. Kamari, F. Buono, On extropy of past lifetime distribution, Ricerche di Matematica, 70 (2021), 505-515. https://doi.org/10.1007/s11587-020-00488-7 [14] A. Kaufmann, Introduction to the theory of fuzzy subsets-fundamental theoretical elements, Academic, New York, 1 (1975). https://archive.org/details/introductiontoth0000kauf [15] M. R. Kazemi, S. Tahmasebi, F. Buono, M. Longobardi, Fractional deng entropy and extropy and some applications, Entropy, 23(5) (2021), 623. https://doi.org/10.3390/e23050623 [16] A. S. Krishnan, S. M. Sunoj, N. U. Nair, Some reliability properties of extropy for residual and past lifetime random variables, Journal of the Korean Statistical Society, 49 (2020), 457-474. https://doi.org/10.1007/ s42952-019-00023-x [17] F. Lad, G. Sanfilippo, G. Agr´o, Extropy: Complementary dual of entropy, Statistical Science, 30(1) (2015), 40-58. https://doi.org/10.1214/14-STS430 [18] P. Li, B. Liu, Entropy of credibility distributions for fuzzy variables, IEEE Transactions on Fuzzy Systems, 16 (2008), 123-129. https://doi.org/10.1109/TFUZZ.2007.894975 [19] B. Liu, Y. K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on Fuzzy Systems, 10(4) (2002), 445-450. https://doi.org/10.1109/TFUZZ.2002.800692 [20] J. Liu, F. Xiao, Information volume of mass function based on extropy, Soft Computing, 26(5) (2022), 2409-2418. https://doi.org/10.1007/s00500-021-06410-z [21] J. Liu, F. Xiao, R´enyi extropy, Communications in Statistics-Theory and Methods, 52(16) (2023), 5836-5847. https://www.tandfonline.com/toc/lsta20/52/16 [22] S. Nahmias, Fuzzy variables, Fuzzy Sets and Systems, 1 (1978), 97-110. https://doi.org/10.1016/ 0165-0114(78)90011-8 [23] E. Y. Ozkan, Inequalities for approximation of new defined fuzzy post-quantum Bernstein polynomials via intervalvalued fuzzy numbers, Symmetry, 14 (2022), 696. https://doi.org/10.3390/sym14040696
[24] E. Y. Ozkan, Approximation by fuzzy (p, q)-Bernstein-Chlodowsky operators, Sahand Communications in Mathematical Analysis, 19(2) (2022), 113-132. https://doi.org/10.22130/scma.2022.524506.910
[25] E. Y. Ozkan, B. Hazarika, Approximation results by fuzzy Bernstein type rational functions via intervalvalued fuzzy number, Soft Computing, 27 (2023), 6893-6901. https://doi.org/10.1007/s00500-023-08013-2 [26] S. K. Pal, B. Chakraborty, Fuzzy set theoretic measure for automatic feature evaluation, IEEE Transactions on Systems, Man, and Cybernetics, SMC, 16(5) (1986), 754-760. http://hdl.handle.net/10263/921 [27] N. R. Pal, S. K. Pal, Object background segmentation using a new definition of entropy, IEE Proceedings E (Computers and Digital Techniques), 136 (1989), 284-295. https://repository.ias.ac.in/26062/ [28] N. R. Pal, S. K. Pal, Higher order fuzzy entropy and hybrid entropy of a set, Information Sciences, 61 (1992), 211-231. https://doi.org/10.1016/0020-0255(92)90051-9 [29] L. Pan, Y. Deng, A new belief entropy to measure uncertainty of basic probability assignments based on belief function and plausibility function, Entropy, 20(11) (2018), 842. https://doi.org/10.3390/e20110842 [30] G. Qiu, The extropy of order statistics and record values, Statistics and Probability Letters, 120 (2017), 52-60. https://doi.org/10.1016/j.spl.2016.09.016 [31] A. R´enyi, On measures of entropy and information, In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Contributions to the Theory of Statistics, 1 (1961), 547-561. http: //l.academicdirect.org/Horticulture/GAs/Refs/Renyi_1961.pdf [32] G. Shafer, A mathematical theory of evidence, Princeton University Press, 42 (1976). https://www.ams.org/ journals/bull/1977-83-04/S0002-9904-1977-14338-3/S0002-9904-1977-14338-3.pdf [33] C. E. Shannon, A mathematical theory of communication, The Bell System Technical Journal, 27 (1948), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x [34] C. E. Shannon, W. Weaver, The mathematical theory of communication, University of Illinois Press, 27 (1949), 379-423, 623-656. https://psycnet.apa.org/record/1950-04584-000 [35] K. S. Song, R´enyi information, Loglikelihood and an Intrinsic Distribution Measure. Journal of Statistical Planning and Inference, 93(1-2) (2001), 51-69. https://doi.org/10.1016/S0378-3758(00)00169-5 [36] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, Journal of Statistical Physics, 52 (1988), 479-487. http://dx.doi.org/10.1007/BF01016429 [37] M. R. Ubriaco, Entropies based on fractional calculus, Physics Letters A, 373 (2009), 2516-2519. https://doi. org/10.1016/j.physleta.2009.05.026 [38] N. M. Vaselabadi, S. Tahmasebi, M. R. Kazemi, F. Buono, Results on varextropy measure of random variables, Entropy, 23(3) (2021), 356. https://doi.org/10.3390/e23030356 [39] Y. Xue, Y. Deng, Tsallis extropy, Communications in Statistics-Theory and Methods, 52(3) (2023), 751-762. https://doi.org/10.1080/03610926.2021.1921804 [40] P. Yu, Y. Deng, On the scaled R´enyi entropy and application, Communications in Statistics Theory and Methods, 1 (2024). https://doi.org/10.1080/03610926.2024.2301986 [41] L. A. Zadeh, Fuzzy sets, Information and Control, 8(3) (1965), 338-353. https://doi.org/10.1016/ S0019-9958(65)90241-X [42] L. A. Zadeh, Probability measures of fuzzy events, Journal of Mathematical Analysis and Applications, 2 (1968), 421-427. https://doi.org/10.1016/0022-247X(68)90078-4 [43] L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 1 (1978), 3-28. https: //doi.org/10.1016/0165-0114(78)90029-5 [44] R. Zamini, S. Ghafouri, F. Goodarzi, Varextropy of doubly truncated random variable, arXiv preprintarXiv: 2407.21423, (2024). https://doi.org/10.48550/arXiv.2407.21423 [45] Q. Zhou, Y. Deng, Belief extropy: Measure uncertainty from negation, Communications in Statistics-Theory and Methods, 52(11) (2023), 3825-3847. https://doi.org/10.1080/03610926.2021.1980049 | ||
آمار تعداد مشاهده مقاله: 28 تعداد دریافت فایل اصل مقاله: 57 |