
تعداد نشریات | 33 |
تعداد شمارهها | 770 |
تعداد مقالات | 7,474 |
تعداد مشاهده مقاله | 12,460,218 |
تعداد دریافت فایل اصل مقاله | 8,475,088 |
Some construction methods of interval-valued implications on bounded lattices | ||
Iranian Journal of Fuzzy Systems | ||
دوره 21، شماره 6، بهمن و اسفند 2024، صفحه 33-54 اصل مقاله (462.62 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2024.48572.8569 | ||
نویسندگان | ||
Funda Karacal1؛ Kübra Karacair2؛ Ümit Ertuğrul* 3 | ||
1Karadeniz Technical University | ||
2Karadeniz Teknik Üniversitesi | ||
3Karadeniz Technical University Faculty of Scince Department of Mathematics TRABZON/TURKEY | ||
چکیده | ||
In recent years, implication operators have been studied intensively from many perspectives. These include the study of construction methods of implication operators. Additionally, it has been investigated whether some aggregation operators such as t-norm in interval-valued L-fuzzy set theory are representable. In this paper, we present some construction methods to obtain interval-valued implications, which are i-representable or not depending on the lattice and fuzzy logic operators, via some fuzzy logic operators, order preserving and/or order reversing functions. Moreover, many illustrative examples are included. | ||
کلیدواژهها | ||
Implications؛ Lattice of closed intervals؛ Interval-valued fuzzy set؛ Bounded lattice؛ Construction method؛ Order preserving function؛ Order reversing function | ||
مراجع | ||
[1] I. Aguil´o, V. K. Gupta, B. Jayaram, S. Massanet, J. V. Riera, N. R. Vemuri, Generating methods of some classes of fuzzy implications obtained by unary functions and algebraic structures, Fuzzy Sets and Systems, 484 (2024), 108948. https://doi.org/10.1016/j.fss.2024.108948 [2] C. Alcaldea, A. Buruscob, R. Fuentes-Gonz´alez, A constructive method for the definition of interval-valued fuzzy implication operators, Fuzzy Sets and Systems, 153(2) (2005), 211-227. https://doi.org/10.1016/j.fss.2005. 01.006 [3] M. Baczy´nski, B. Jayaram, Fuzzy implications, Studies in Fuzziness and Soft Computing, Heidelberg: Springer, Berlin, 231 (2008). https://doi.org/10.1007/978-3-540-69082-5 [4] B. C. Bedregal, G. P. Dimuro, R. H. N. Santiago, R. H. S. Reiser, On interval fuzzy S-implications, Information Sciences, 180(8) (2010), 1373-1389. https://doi.org/10.1016/j.ins.2009.11.035 [5] G. Birkhoff, Lattice theory, American Mathematical Society Colloquium Publishers, Providence, RI, 1967.
[6] H. Bustince, Interval-valued fuzzy sets in soft computing, International Journal of Computational Intelligence Systems, 3(2) (2010), 215-222. https://doi.org/10.1080/18756891.2010.9727692 [7] G. Deschrijver, A representation of t-norms in interval-valued L-fuzzy set theory, Fuzzy Sets and Systems, 159(13) (2008), 1597-1618. https://doi.org/10.1016/j.fss.2007.09.017 [8] G. Deschrijver, Uninorms which are neither conjunctive nor disjunctive in interval-valued fuzzy set theory, Information Sciences, 244 (2013), 48-59. https://doi.org/10.1016/j.ins.2013.04.033 [9] G. Deschrijver, C. Cornelis, Representability in interval-valued fuzzy set theory, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15(3) (2007), 345-361. https://doi.org/10.1142/S0218488507004716 [10] P. Dryga´s, Some class of uninorms in interval valued fuzzy set theory in intelligent systems’2014, Springer International Publishing, Cham, 322 (2015), 33-43. https://doi.org/10.1007/978-3-319-11313-5_4
[11] M. B. Gorza lczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems, 21(1) (1987), 1-17. https://doi.org/10.1016/0165-0114(87)90148-5 [12] F. M. He, B. W. Fang, Characterizations for the alpha-cross-migrativity of continuous t-conorms over generated implications, Iranian Journal of Fuzzy Systems, 21(1) (2024), 65-82. https://doi.org/10.22111/ijfs.2023. 44829.7899 [13] F. Kara¸cal, K. Karacair, Some implication operators on bounded lattices, International Journal of General Systems, 53(7-8) (2024), 898-927. https://doi.org/10.1080/03081079.2024.2335907 [14] F. Kara¸cal, M. N. Kesicio˘glu, ¨U. Ertu˘grul, The implications obtained by two given implications on bounded lattices, International Journal of General Systems, 50(3) (2021), 281-299. https://doi.org/10.1080/03081079. 2021.1908279 [15] M. N. Kesicio˘glu, Construction methods for implications on bounded lattices, Kybernetika, 55(4) (2019), 641-667. https://doi.org/10.14736/kyb-2019-4-0641 [16] M. N. Kesicio˘glu, ¨U. Ertu˘grul, F. Kara¸cal, Generalized convex combination of implications on bounded lattices, Iranian Journal of Fuzzy Systems, 17(6) (2020), 75-91. https://doi.org/10.22111/ijfs.2020.5602 [17] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Academic Publishers, Dordrecht, 2000. https: //doi.org/10.1007/978-94-015-9540-7 [18] M. Mas, M. Monserrat, J. Torrens, The law of importation for discrete implications, Information Sciences, 179(24) (2009), 4208-4218. https://doi.org/10.1016/j.ins.2009.08.028 [19] M. Mas, M. Monserrat, J. Torrens, E. Trillas, A survey on fuzzy implication functions, IEEE Transactions on Fuzzy Systems, 15(6) (2007), 1107-1121. https://doi.org/10.1109/TFUZZ.2007.896304 [20] D. Maximov, V. I. Goncharenko, Y. S. Legovich, Multi-valued neural networks I a multi-valued associative memory, Neural Computing and Applications, 33(16) (2021), 10189-10198. https://doi.org/10.48550/arXiv.2302.11909 [21] Z. Peng, X. Zhang, Study of the generalized hypothetical syllogism for some well known families of fuzzy implications with respect to strict t-norm, Iranian Journal of Fuzzy Systems, 21(2) (2024), 181-200. https://doi.org/10.22111/ ijfs.2024.46361.8164 [22] J. V. Riera, J. Torrens, Residual implications on the set of discrete fuzzy numbers, Information Sciences, 247 (2013), 131-143. https://doi.org/10.1016/j.ins.2013.06.008 [23] A. Starkey, H. Hagras, S. Shakya, G. Owusu, A multi-objective genetic type-2 fuzzy logic based system for mobile field workforce area optimization, Information Sciences, 329 (2016), 390-411. https://doi.org/10.1016/j.ins. 2015.09.014 [24] C. Y. Wang, L. Wan, Type-2 fuzzy implications and fuzzy-valued approximation reasoning, International Journal of Approximate Reasoning, 102 (2018), 108-122. https://doi.org/10.1016/j.ijar.2018.08.004 [25] M. Wang, X. Zhang, H. Bustince, J. Fernandez, Construction methods of fuzzy implications on bounded posets, International Journal of Approximate Reasoning, 164 (2024), 109064. https://doi.org/10.1016/j.ijar.2023. 109064 | ||
آمار تعداد مشاهده مقاله: 247 تعداد دریافت فایل اصل مقاله: 230 |