
تعداد نشریات | 33 |
تعداد شمارهها | 765 |
تعداد مقالات | 7,414 |
تعداد مشاهده مقاله | 12,319,083 |
تعداد دریافت فایل اصل مقاله | 8,417,252 |
The characterization for the sobriety of $L$-convex spaces | ||
Iranian Journal of Fuzzy Systems | ||
دوره 21، شماره 6، بهمن و اسفند 2024، صفحه 55-68 اصل مقاله (492.34 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2024.49163.8668 | ||
نویسندگان | ||
Guojun Wu؛ Wei Yao* | ||
Nanjing University of Information Science and Technology | ||
چکیده | ||
With a commutative integral quantale $L$ as the truth value table, this study focuses on the characterizations of the sobriety of stratified $L$-convex spaces, as introduced by Liu and Yue in 2024. It is shown that a stratified sober $L$-convex space $Y$ is a sobrification of a stratified $L$-convex space $X$ if and only if there exists a quasihomeomorphism from $X$ to $Y$; a stratified $L$-convex space is sober if and only if it is a strictly injective object in the category of stratified $S_0$ $L$-convex spaces. | ||
کلیدواژهها | ||
Quantale؛ $L$-convex space؛ sobriety؛ quasihomeomorphism؛ strictly injective object | ||
مراجع | ||
[1] J. Ad´amek, H. Herrlich, G. E. Strecker, Abstract and concrete categories, Wiley, New York, 1990.
[2] M. Ern´e, General stone duality, Topology and Its Applications, 137 (2004), 125-158. https://doi.org/10.1016/ S0166-8641(03)00204-9 [3] M. H. Escard´o, R. C. Flagg, Semantic domains, injective spaces and monad: Extended abstract, Electronic Notes in Theoretical Computer Science, 20 (1999), 229-244. https://doi.org/10.1016/S1571-0661(04)80077-X [4] S. P. Franklin, Some results on order convexity, The American Mathematical Monthly, 69 (1962), 357-359. https: //doi.org/10.1080/00029890.1962.11989897 [5] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott, Continuous lattices and domains, Cambridge University Press, Cambridge, 2003. [6] J. Goubault-Larrecq, Non-Hausdorff topology and domain theory, Cambridge University Press, Cambridge, 2013.
[7] U. H¨ohle, Many-valued topology and its applications, Kluwer Academic Publishers, Boston, Dordrecht, London, 2001. [8] H. Komiya, Convexity on a topological space, Fundamenta Mathematicae, 111 (1981), 107-113. https://doi.org/ 10.4064/fm-111-2-107-113 [9] M. Y. Liu, Y. L. Yue, The reflectivity of the category of stratified L-algebraic closure spaces, Iranian Journal of Fuzzy Systems, 21 (2024), 117-127. https://doi.org/10.22111/IJFS.2024.47190.8314 [10] M. Y. Liu, Y. L. Yue, X. W. Wei, Frame-valued Scott open set monad and its algebras, Fuzzy Sets and Systems, 460 (2023), 52-71. https://doi.org/10.1016/j.fss.2022.11.002 [11] E. Marczewski, Independence in abstract algebras results and problems, Colloquium Mathematicum, 14 (1966), 169-188. https://doi.org/10.4064/cm-14-1-169-188 [12] Y. Maruyama, Lattice-valued fuzzy convex geometry, Computational Geometry and Discrete Mathematics, 164 (2009), 22-37. [13] Y. Maruyama, Fundamental results for pointfree convex geometry, Annals of Pure and Applied Logic, 161 (2010), 1486-1501. https://doi.org/10.1016/j.apal.2010.05.002 [14] J. Nieminen, The ideal structure of simple ternary algebras, Colloquium Mathematicum, 40 (1978), 23-29. https: //doi.org/10.4064/cm-40-1-23-29 [15] R. Noor, A. K. Srivastava, The categories L-Top0 and L-Sob as epireflective hulls, Soft Computing, 18 (2014), 1865-1871. https://doi.org/10.1007/s00500-014-1315-8 [16] B. Pang, Quantale-valued convex structures as lax algebras, Fuzzy Sets and Systems, 473 (2023), 108737. https: //doi.org/10.1016/j.fss.2023.108737 [17] B. Pang, F. G. Shi, Subcategories of the category of L-convex spaces, Fuzzy Sets and Systems, 313 (2017), 61-74. https://doi.org/10.1016/j.fss.2016.02.014 [18] B. Pang, F. G. Shi, Fuzzy counterparts of hull operators and interval operators in the framework of L-convex spaces, Fuzzy Sets and Systems, 369 (2019), 20-39. https://doi.org/10.1016/j.fss.2018.05.012 [19] M. V. Rosa, A study of fuzzy convexity with special reference to separation properties, Cochin University of Science and Technology, Cochin, India, 1994. [20] K. I. Rosenthal, Quantales and their applications, Longman House, Burnt Mill, Harlow, 1990.
[21] C. Shen, F. G. Shi, Characterizations of L-convex spaces via domain theory, Fuzzy Sets and Systems, 380 (2020), 44-63. https://doi.org/10.1016/j.fss.2019.02.009 [22] C. Shen, S. J. Yang, D. S. Zhao, F.G. Shi, Lattice-equivalence of convex spaces, Algebra University, 80 (2019), 26. https://doi.org/10.1007/s00012-019-0600-x [23] S. H. Su, Q. G. Li, The category of algebraic L-closure systems, Journal of Intelligent and Fuzzy Systems, 33 (2017), 2199-2210. https://doi.org/10.3233/JIFS-16452 [24] L. C. Sun, B. Pang, Completely Scott closed set and its applications, Topology and Its Applications, Preprint, 2024.
[25] M. Van De Vel, Binary convexities and distributive lattices, Proceedings of the London Mathematical Society, 48 (1984), 1-33. https://doi.org/10.1112/plms/s3-48.1.1 [26] M. Van De Vel, On the rank of a topological convexity, Fundamenta Mathematicae, 119 (1984), 17-48. https: //doi.org/10.4064/fm-119-2-101-132 [27] M. Van De Vel, Theory of convex spaces, North-Holland, Amsterdam, 1993.
[28] M. Y. Wu, L. K. Guo, Q. G. Li, New representatons of algebraic domains and algebraic L-domains via closure systems, Semigroup Forum, 103 (2021), 700-712. https://doi.org/10.1007/s00233-021-10209-7 [29] G. J. Wu, W. Yao, Sober L-convex spaces and L-join-semilattices, Iranian Journal of Fuzzy Systems, 21 (2024), 163-177. https://doi.org/10.22111/ijfs.2024.48576.8572 [30] C. C. Xia, Some further results on pointfree convex geometry, Algebra University, 85 (2024), 20. https://doi. org/10.1007/s00012-024-00847-7 [31] L. S. Xu, X. X. Mao, Formal topological characterizations of various continuous domains, Computational and Applied Mathematics, 56 (2008), 444-452. https://doi.org/10.1016/j.camwa.2007.12.010 [32] W. Yao, Quantitative domains via fuzzy sets: Part I: Continuity of fuzzy directed-complete poset, Fuzzy Sets and Systems, 161 (2010), 983-987. https://doi.org/10.1016/j.fss.2009.06.018 [33] W. Yao, A survey of fuzzifications of frames, the Papert-Papert-Isbell adjunction and sobriety, Fuzzy Sets and Systems, 190 (2012), 63-81. https://doi.org/10.1016/j.fss.2011.07.013 [34] W. Yao, S. E. Han, A stone-type duality for sT0 stratified Alexandrov L-topological spaces, Fuzzy Sets and Systems, 282 (2016), 1-20. https://doi.org/10.1016/j.fss.2014.12.012 [35] W. Yao, L. X. Lu, Fuzzy Galois connections on fuzzy posets, Mathematical Logic Quarterly, 55 (2009), 84-91. https://doi.org/10.1002/malq.200710079 [36] W. Yao, C. J. Zhou, Representation of sober convex spaces by join-semilattices, Journal of Nonlinear and Convex Analysis, 21 (2020), 2715-2724. [37] Y. L. Yue, W. Yao, W. K. Ho, Applications of Scott-closed sets in convex structures, Topology and Its Applications, 314 (2022), 108093. https://doi.org/10.1016/j.topol.2022.108093 [38] Z. X. Zhang, A general categorical reflection for various completions of closure spaces and Q-ordered sets, Fuzzy Sets and Systems, 473 (2023), 1-18. https://doi.org/10.1016/j.fss.2023.108736 [39] Q. Y. Zhang, L. Fan, Continuity in quantitative domains, Fuzzy Sets and Systems, 154 (2005), 118-131. https: //doi.org/10.1016/j.fss.2005.01.007 [40] B. Zhao, Y. J. Zhang, Epireflections in the category of T0 stratified Q-cotopological spaces, Soft Computing, 27 (2023), 2443-2451. https://doi.org/10.1007/s00500-022-07809-y | ||
آمار تعداد مشاهده مقاله: 80 تعداد دریافت فایل اصل مقاله: 89 |