تعداد نشریات | 32 |
تعداد شمارهها | 719 |
تعداد مقالات | 7,024 |
تعداد مشاهده مقاله | 11,553,924 |
تعداد دریافت فایل اصل مقاله | 7,911,713 |
بکارگیری نمایههای ریسک محیطزیستی در مکانیابی مناطق استقرار دیوارهای سیلبند رودخانهای در جنوب استان کرمان | ||
مخاطرات محیط طبیعی | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 12 دی 1403 | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22111/jneh.2025.49125.2055 | ||
نویسندگان | ||
سعیده شهرکی1؛ ملیحه عرفانی* 2؛ فاطمه جهانی شکیب3؛ فاطمه عین الهی پیر4 | ||
1دانش آموخته کارشناسی ارشد، گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه زابل | ||
2دانشیار، گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه زابل | ||
3استادیار، گروه محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه بیرجند | ||
4استادیار گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه زابل | ||
چکیده | ||
افزایش مخاطرات و خسارات ناشی از سیلاب در سالهای اخیر لزوم توجه به مکانیابی روشهای زیستی و فیزیکی کنترل سیلابها را غیرقابل اجتناب کرده است. لذا روشهای فیزیکی مانند سیلبند رودخانهای که در کوتاهمدت میتوانند از خسارات ناشی از سیلابها بکاهند، مورد توجه این پژوهش است. منطقه مورد مطالعه بخش جنوبی استان کرمان شامل هفت شهرستان فاریاب، کهنوج، جیرفت، منوجان، عنبرآباد، قلعهگنج و رودبارجنوب است که اغلب آنها با خطر بالای سیلابهای ناشی از طغیان رودخانهای مواجهند. از اینرو مکانیابی سیلبند رودخانهای با کمک نمایههای ریسک محیطزیستی در قالب دو لایه خطر و حساسیت به وقوع سیلاب انجام شد. معیارهای خطر سیلاب، بومشناختی بوده و شامل سه معیار مهیایی آب (بارندگی، تجمع رواناب)، نفوذپذیری (زبری سطح، نوع خاک و NDVI) و شکل زمین (شیب) است. معیارهای حساسیت به وقوع سیلاب، اقتصادی-اجتماعی بوده و شامل شبکههای حملونقل، مناطق مسکونی، مناطق نمونه گردشگری و اراضی کشاورزی است. ابتدا معیارهای نمایههای خطر سیلاب استانداردسازی و روش تحلیل سلسله-مراتبی وزندهی شد. از تلفیق معیارهای مذکور به روش ترکیب وزنی خطی (WLC)، نمایههای خطر به دست آمد. در نهایت نمایه خطر سیلاب با هر یک از معیارهای حساسیت به وقوع سیلاب تقاطع داده شد تا مکانهای پرخطر و حساس یا مناطقی با ریسک بالای سیلاب برای هر یک از معیارهای حساسیت به وقوع سیلاب به دست آید. بر اساس نتایج به دست آمده 56 درصد از اراضی کشاورزی و 48 درصد از مناطق ساختوساز شده در منطقه ریسک سیلاب قرار دارند. همچنین 24 درصد از طول شبکه حمل و نقل نیز در این محدوده قرار دارد، اما هیچ یک از مناطق نمونه گردشگری در مناطق با خطر سیلاب واقع نشدهاند. علاوه بر این 182 کیلومتر از طول رودخانههای استان که معادل 2 درصد آنهاست، نیاز به احداث دیوارههای سیلبند جهت جلوگیری از خطر سیلاب در مناطق حساس اقتصادی-اجتماعی دارند. نتایج این مطالعه میتواند در تصمیمگیریهای مدیریتی جهت کاهش خسارات محیطزیستی سیلاب کاربرد داشته باشد و روش کار آن نیز در مطالعات مشابه در مناطق دیگر به کار رود. | ||
کلیدواژهها | ||
ارزیابی توان محیط زیست؛ مدیریت سرزمین؛ ریسک سیلاب؛ حساسیت به وقوع سیلاب؛ استان کرمان | ||
مراجع | ||
استانداری استان کرمان، 1399. نقشه مناطق سیل زده استان کرمان، کهنوج و فاریاب، پنجم فروردین 1399.
حبیبی، آرش؛ آفریدی، صنم. (1401). تصمیمگیری چندشاخصه (قطعی و فازی)، تهران: انتشارات نارون. ص 272.
دفتر مهندسی و معیارهای فنی آب و آبفای وزارت نیرو. (1389). راهنمای طراحی، ساخت و نگهداری دیوارهای سیلبند (نشریه شماره 518).
سلیمانی ساردو، فرشاد؛ رفیعی ساردوئی، الهام؛ مصباح زاده، طیبه؛ آذره، علی. (1400). استفاده از تصاویر سنتینل-۱ جهت پایش خسارت سیلاب فروردین ۱۳۹۹، جنوب استان کرمان براساس الگوریتم جنگل تصادفی. مجله علوم و مهندسی آبخیزداری ایران، 15(53)، ۳۲-۲۳.
http://dorl.net/dor/20.1001.1.20089554.1400.15.53.4.8
شهابی، هیمن. (1400). پهنهبندی حساسیت وقوع سیل در مناطق شمالی ایران با استفاده از الگوریتمهای پیشرفته دادهکاوی (منطقه مورد مطالعه: حوزه آبخیز هراز. برنامه ریزی منطقه ای، 11(41)، 182-165. https://doi.org/10.30495/jzpm.2021.4246
عبداللهزاده، علی؛ اونق، مجید؛ اسعدالدین، امین؛ مصطفیزاده، رئوف. (1395). گزارش فنی: محدودیت توسعه کاربری سکونتگاهی ناشی از سیلاب و ضریب رواناب در چارچوب آمایش سرزمین، مطالعه موردی: حوزه آبخیز زیارت گرگان. مهندسی و مدیریت آبخیز، 8 (2)، 221-235. https://doi.org/10.22092/ijwmse.2016.106462
عرفانی، ملیحه؛ جورابیان شوشتری، شریف؛ اردکانی، طاهره؛ جهانی شکیب، فاطمه. (1402). مدلسازی گرادیان مکانی خدمت اکوسیستمی تولید آب با InVEST در زیرحوزههای شمالی استان کرمان. مدیریت آب و آبیاری، 13(1)، 63-81. doi:10.22059/jwim.2023.349742.1024
عیسی زاده، وحید؛ علی بیگی، زهرا. (1400). شبیهسازی مناطق مستعد سیلاب با استفاده از شبکه عصبی پرسپترون و سیستم اطلاعات جغرافیایی (منطقه موردمطالعه: حوزه آبخیز زولاچای، شهرستان سلماس. پژوهشنامه مدیریت حوزه آبخیز، 24 (12)، ۱۰۸-۹۷. http://dx.doi.org/10.52547/jwmr.12.24.97
محمودزاده، حسن؛ یاری، فاطمه؛ واحدی، علی. (1396). کاربرد تکنیکهای دورسنجی و GIS برای پهنهبندی خطر سیلاب در شهر ارومیه با رویکرد تحلیل چندمعیاره. پژوهشهای جغرافیای طبیعی، 49 (4)، 730-719. https://doi.org/10.22059/jphgr.2018.210916.1006894
مخدوم، مجید. (1393). شالوده آمایش سرزمین، انتشارات دانشگاه تهران، 304 ص.
نجفی، اسماعیل؛ کریمی کردابادی، مرتضی. (1399). ارزیابی و پهنهبندی خطر سیلاب با استفاده از مدل ترکیبی AHP-FUZZY با تأکید بر امنیت شهری (مطالعه موردی: منطقه یک کلانشهر تهران). جغرافیا و مخاطرات محیطی، 9 (2)، 60-43. https://doi.org/10.22067/geo.v9i2.86110
Alaoui, A., Rogger, M., Peth, S., & Blöschl, G. (2018). Does soil compaction increase floods? A review. Journal of Hydrology, 557, 631-642. Aydin, M. C., & Sevgi Birincioğlu, E. (2022). Flood risk analysis using gis-based analytical hierarchy process: a case study of Bitlis Province. Applied Water Science, 12(6), 122. Baby, S. (2013). AHP modeling for multicriteria decision-making and to optimize strategies for protecting coastal landscape resources. International Journal of Innovation, Management and Technology, 4(2), 218. Bello, A. A., Abua, M. A., Yelwa, S. A., Undiyaundeye, F. A., Iwara, A. I., Abutunghe, M. A., Bassey, B. J., Egbonyi, D. E., & Owalom, S. O. (2022). Geospatial Mapping of Areas at Risk to Flood along Sokoto-Rima River Basin, Sokoto Nigeria. Environment and Ecology Research. Doi: 10.13189/eer.2022.100615. Belmonte, C., & García, S. (2012). Flood risk assessment and mapping in peri-urban Mediterranean environments using hydrogeomorphology. Application to ephemeral streams in the Valencia region (eastern Spain), Landscape and Urban Planning, 104(5): 189– 200. Cai, S., Fan, J., & Yang, W. (2021). Flooding risk assessment and analysis based on GIS and the TFN-AHP method: a case study of Chongqing, China. Atmosphere, 12(5), 623. Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., & Böhner, J. (2015): System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991-2007, doi:10.5194/gmd-8-1991-2015. DOI: 10.5194/gmd-8-1991-2015. Costa-Cabral, M., & Burges, S.J. (1994). Digital Elevation Model Networks (DEMON): a model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research, 30:1681-1692. Criss, R. E. (2018). The theoretical link between rainfall and flood magnitude. Hydrological Processes, 32(11), 1607-1615. Daneshparvar, B., Rasi Nezami, S., Feizi, A., & Aghlmand, R. (2022). Comparison of results of flood hazard zoning using AHP and ANP methods in GIS environment: A case study in Ardabil province, Iran. Journal of Applied Research in Water and Wastewater, 9(1), 1-7. Dano, U. L., Balogun, A. L., Matori, A. N., Wan Yusouf, K., Abubakar, I. R., Said Mohamed, M. A., ... & Pradhan, B. (2019). Flood susceptibility mapping using GIS-based analytic network process: A case study of Perlis, Malaysia. Water, 11(3), 615. Dong, An., Wooyeol, Jeon., & Hyun-Ki, Ko. (2022). Analysis of Flooding Patterns in River Terraces. Han-gukbangjaehakoenonmunjip, doi: 10.9798/kosham.2022.22.5.219. Ehsan, S., Marx, W., & Wieprecht, S. (2013). Importance of Flood Severity Estimation for Flood Plain Management in a River Valley. Journal of River Engineering, SCIJOUR-Scientific Journals Publisher, 1(1). Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International journal of climatology, 37(12), 4302-4315. Gigović, L., Pamučar, D., Bajić, Z., & Drobnjak, S. (2017). Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas. Water, 9(6), 360. Hammami, S., Zouhri, L., Souissi, D., Souei, A., Zghibi, A., Marzougui, A., & Dlala, M. (2019). Application of the GIS-based multi-criteria decision analysis and analytical hierarchy process (AHP) in flood susceptibility mapping (Tunisia). Arabian Journal of Geosciences, 12, 1-16. Jenkins, K., Hall, J., Glenis, V., & Kilsby, C. (2018). A probabilistic analysis of surface water flood risk in London, Risk Analysis, 38(6): 1169-1182. Jiwon, Jang., & Seungho, Lee. (2014). Relationships between Rainfall and Flooding Disaster in the Downstream Areas of Han River. China Review International, doi: 10.14383/CRI.2014.9.3.207 Jongman, B. (2018). Effective adaptation to rising flood risk. Nature communications, 9(1), 1986. Jongman, B., Ward, P. J., & Aerts, J. C. J. H. (2012). Global exposure to river and coastal flooding: long term trends and changes. Global Environmental Change, 22 (4): 823–835. Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J.C., Mathis, M., & Brumby, S.P. (2021). Global land use/land cover with sentinel 2 and deep learning; IEEE: Manhattan, NY, USA: pp. 4704–4707. Kittipongvises, S., Phetrak, A., Rattanapun, P., Brundiers, K., Buizer, J. L., & Melnick, R. (2020). AHP-GIS analysis for flood hazard assessment of the communities near the world heritage site on Ayutthaya Island, Thailand. International Journal of Disaster Risk Reduction, 48, 101612. Kongmuang, C., Tantanee, S., & Seejata, K. (2020). Urban flood hazard map using gis of Muang Sukhothai district, Thailand. Geographia Technica, 15(1): 143-152. Kumar, G. P., & Sen, S. D. (2022). Flood hazard and risk assessment of Deoha River Basin, Central Ganga Plain, India: An GIS approach. Disaster Advances, 15 (10), 42-51, doi: 10.25303/1510da042051 Kura, N. U., Usman, S. U., & Khalil, M. S. (2023). Flood Vulnerability Assessment of A Semi-Arid Region: A Case Study of Dutse in Jigawa State, Nigeria. Journal of Environmental Issues and Climate Change, 2(1), 20-29. El Hourani, M., & Broll, G. (2021). Soil protection in floodplains—A review. Land, 10(2), 149. doi: 10.3390/LAND10020149. Masoudi, M., Centeri, C., Jakab, G., Nel, L., & Mojtahedi, M. (2021). GIS-Based Multi-Criteria and Multi-Objective Evaluation for Sustainable Land-Use Planning (Case Study: Qaleh Ganj County, Iran), International Journal of Environmental Research, 15: 457–474. Msabi, M. M., & Makonyo, M. (2021). Flood susceptibility mapping using GIS and multi-criteria decision analysis: A case of Dodoma region, central Tanzania. Remote Sensing Applications: Society and Environment, 21: 100445. Melillo, P., & Pecchia, L. (2016, August). What is the appropriate sample size to run the analytic hierarchy process in survey-based research? In Proceedings of the International Symposium on the Analytic Hierarchy Process (pp. 4-8). Paprotny, D., Sebastian, A., Morales-Napoles, O. & Jonkman, S. (2018). Trends in flood losses in Europe over the past 150 years, Nature Communications, 9(1): 1-12. Patel, D.P., & Srivastava, P.K. (2013). Flood Hazards Mitigation Analysis Using Remote Sensing and GIS: Correspondence with Town Planning Scheme. Water Resour Manage, 27, 2353–2368. Pathan, A.I., Agnihotri, P.G., Said, S., Patel, D., Prieto, C., Mohsini, U., Patidar, N., Gandhi, P., Jariwala, K., Đurin, B., Azimi, M.Y., Rasuli, J., Dummu, K., Raaj, S., Shaikh, A.A., & Salihi, M. (2022a). Flood risk mapping using multi-criteria analysis (TOPSIS) model through geospatial techniques case study of the Navsari city, Gujarat, India, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022. (No. EGU22-2418). Copernicus Meetings, https://doi.org/10.5194/egusphere-egu22-2418, 2022. Pathan, A.I., Girish Agnihotri, P., Said, S., & Patel, D. (2022b). AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India, Environmental Monitoring and Assessment, 194(7): 509. Penki, R., Basina, S. S., & Tanniru, S. R. (2023). Application of geographical information system-based analytical hierarchy process modeling for flood susceptibility mapping of Krishna District in Andhra Pradesh. Environmental Science and Pollution Research, 30(44), 99062-99075. https://doi.org/10.1007/s11356-022-22924-x Pham, B. T., Luu, C., Van Dao, D., Van Phong, T., Nguyen, H. D., Van Le, H., ... & Prakash, I. (2021). Flood risk assessment using deep learning integrated with multi-criteria decision analysis. Knowledge-based systems, 219, 106899. Rahmati, O., Zeinivand, H., & Besharat, M. (2016). Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomatics, Natural Hazards and Risk, 7(3), 1000-1017. Reisinger, A., Howden, M., Vera, C., Garschagen, M., Hurlbert, M., Kreibiehl, S., ... & Ranasinghe, R. (2020). The concept of risk in the IPCC Sixth Assessment Report: A summary of cross-working group discussions. Intergovernmental Panel on Climate Change, 15, 130. Riley, S. J., De Gloria, S. D., & Elliot, R. (1999). A Terrain Ruggedness Index That Quantifies Topographic Heterogeneity. Intermountain Journal of Sciences, 5, 23–27. Rincón, D., Khan, U. T., & Armenakis, C. (2018). Flood risk mapping using GIS and multi-criteria analysis: A greater Toronto area case study. Geosciences, 8(8), 275. Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9-26. Sánchez-García, C., Francos, M. (2022). Human-environmental interaction with extreme hydrological events and climate change scenarios as background. Geography and Sustainability, 3(3): 232-236. Şen, Z. (2018). Flood modeling, prediction, and mitigation (p. 431). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-52356-9_2 Souissi, D., Zouhri, L., Hammami, S., Msaddek, M. H., Zghibi, A., & Dlala, M. (2020). GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto International, 35(9), 991-1017. Tan, Z., Liu, S., Wylie, B. K., Jenkerson, C. B., Oeding, J., Rover, J., & Young, C. (2013). MODIS-informed greenness responses to daytime land surface temperature fluctuations and wildfire disturbances in the Alaskan Yukon River Basin. International journal of remote sensing, 34(6), 2187-2199. Tempa, K. (2022). District flood vulnerability assessment using analytic hierarchy process (AHP) with historical flood events in Bhutan, PLoS One,17(6): e0270467. Tian, X., Schleiss, M., Bouwens, C., & van de Giesen, N. (2019). Critical rainfall thresholds for urban pluvial flooding inferred from citizen observations. Science of the total environment, 689, 258-268. Wang, X., Xia, J., Zhou, M., Deng, S., & Li, Q. (2022). Assessment of the joint impact of rainfall and river water level on urban flooding in Wuhan City, China. Journal of Hydrology, 613, 128419. Winsemius, H.C., Aerts, J.C., Van Beek, L.P., Bierkens, M.F., Bouwman, A., Jongman, B., Kwadijk, J.C., Ligtvoet, W., Lucas, P.L., Van Vuuren, D.P., & Ward, P.J. (2016). Global drivers of future river flood risk. Nature Climate Change, 6(4): 381-385. Yue, L., Shen, H., Zhang, L., Zheng, X., Zhang, F., & Yuan, Q. (2017). High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2, and ICESat/GLAS observations. ISPRS Journal of Photogrammetry and Remote Sensing, 123, 20-34. doi:10.1016/j.isprsjprs.2016.11.0. | ||
آمار تعداد مشاهده مقاله: 46 |