| تعداد نشریات | 33 |
| تعداد شمارهها | 799 |
| تعداد مقالات | 7,731 |
| تعداد مشاهده مقاله | 13,788,675 |
| تعداد دریافت فایل اصل مقاله | 9,008,255 |
On the Advance of Flyback CCM Control Strategies: a Comprehensive Review | ||
| International Journal of Industrial Electronics Control and Optimization | ||
| مقاله 2، دوره 8، شماره 3، آذر 2025، صفحه 237-246 اصل مقاله (884.17 K) | ||
| نوع مقاله: Research Articles | ||
| شناسه دیجیتال (DOI): 10.22111/ieco.2024.50064.1628 | ||
| نویسندگان | ||
| Saleh Mohammadi* 1؛ Hamid Reza Izadfar2؛ Naser Eskandarian2 | ||
| 1Department of Electrical and Computer Engineering, Esfarayen university of technology, Esfarayen, North Khorasan, Iran | ||
| 2Department of Electrical and Computer Engineering, Semnan university, Semnan, Iran | ||
| چکیده | ||
| This research aims to provide a comprehensive review of various CCM control strategies for flyback inverters. The study is carried out based on published data in reports, papers and other available online documents. The introduced control strategies make use of different approaches to dominate the constraints on determining the feedback control system gains caused by the zero put on right-half-plane (RHP) and dynamics of LC filter. Thus, the tracking of the considered output current is accurately implemented and the introduced control systems carry out the attenuation of disturbances. Moreover, zero steady-state error and the stability requirements are fulfilled by properly regulating the control signal. The best control structure should be enough fast employing the fewest number of delays in its structure resulting the burden in computational system to be considerably decreased. | ||
| کلیدواژهها | ||
| Flyback micro-inverter؛ stability؛ photovoltaic (PV) system؛ right-half plane (RHP) | ||
| مراجع | ||
|
[1] A. Mousaei, M. Gheisarnejad, M.H. Khooban, Challenges and opportunities of FACTS devices interacting with electric vehicles in distribution networks: A technological review, Journal of Energy Storage, Volume 73, Part A, 2023,108860,ISSN2352-152X,https://doi.org/10.1016/j.est.2023.108860
[2] Kim YH, Jang JW, Shin SC, Won CY. Weighted-efficiency enhancement control for a photovoltaic AC module interleaved flyback inverter using a synchronous rectifier. IEEE transactions on power electronics. 2014 Feb 13;29(12):6481-93. [3] Rezaei MA, Lee KJ, Huang AQ. A high-efficiency flyback micro-inverter with a new adaptive snubber for photovoltaic applications. IEEE transactions on Power Electronics. 2015 Mar 5;31(1):318-27. [4] Sukesh N, Pahlevaninezhad M, Jain PK. Analysis and implementation of a single-stage flyback PV microinverter with soft switching. IEEE transactions on industrial electronics. 2013 May 17;61(4):1819-33. [5] Gao M, Chen M, Zhang C, Qian Z. Analysis and implementation of an improved flyback inverter for photovoltaic AC module applications. IEEE transactions on Power Electronics. 2013 Aug 27;29(7):3428-44. [6] Christidis GC, Nanakos AC, Tatakis EC. Hybrid discontinuous/boundary conduction mode of flyback microinverter for AC–PV modules. IEEE Transactions on Power Electronics. 2015 Aug 19;31(6):4195-205. [7] Kyritsis AC, Tatakis EC, Papanikolaou NP. Optimum design of the current-source flyback inverter for decentralized gridconnected photovoltaic systems. IEEE transactions on energy conversion. 2008 Feb 15;23(1):281-93. [8] Mohammadi S, Izadfar HR, Eskandarian N. A new adaptive clamp for improving weighted efficiency in grid‐tied photovoltaic interleaved two‐switch flyback micro‐inverter. International Transactions on Electrical Energy Systems. 2019 Aug;29(8):e12033. [9] Zhang F, Xie Y, Hu Y, Chen G, Wang X. A hybrid boost–flyback/flyback microinverter for photovoltaic applications. IEEE Transactions on Industrial Electronics. 2019 Feb 11;67(1):308-18. [10] Sarikhani A, Allahverdinejad B, Hamzeh M, Afjei E. A continuous input and output current quadratic buck-boost converter with positive output voltage for photovoltaic applications. Solar Energy. 2019 Aug 1;188:19-27. [11] Rahimi R, Farhangi S, Farhangi B, Moradi GR, Afshari E, Blaabjerg F. H8 inverter to reduce leakage current in transformerless three-phase grid-connected photovoltaic systems. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2017 Aug 23;6(2):910-8. [12] Mohammadi S, Zarchi HA. An interleaved high-power twoswitch flyback inverter with a fast and robust maximum power point tracker. In2016 7th Power Electronics and Drive Systems Technologies Conference (PEDSTC) 2016 Feb 16 (pp. 320-325). IEEE. [13] Mohammadi S, Zarchi HA, Amiri M. Interleaved two-switch flyback microinverter for grid-tied photovoltaic applications. InThe 6th Power Electronics, Drive Systems & Technologies Conference (PEDSTC2015) 2015 Feb 3 (pp. 59-64). IEEE. [14] Wang F, Feng X, Zhang L, Du Y, Su J. Impedance‐based analysis of grid harmonic interactions between aggregated flyback micro‐inverters and the grid. IET Power Electronics. 2018 Mar;11(3):453-9. [15] Keshani M, Adib E, Farzanehfard H. Micro‐inverter based on single‐ended primary‐inductance converter topology with an active clamp power decoupling. IET power electronics. 2018 Jan;11(1):73-81. [16] Mohammadi S, Izadfar HR, Eskandarian N. Performance optimisation of the grid‐connected flyback inverter under improved hybrid conduction mode. IET Renewable Power Generation. 2020 Oct;14(13):2437-46. [17] Dong D, Agamy MS, Harfman-Todorovic M, Liu X, Garces L, Zhou R, Cioffi P. A PV residential microinverter with gridsupport function: Design, implementation, and field testing. IEEE Transactions on Industry Applications. 2017 Sep 14;54(1):469-81.2 [18] Lee SH, Cha WJ, Kwon JM, Kwon BH. Control strategy of flyback microinverter with hybrid mode for PV AC modules. IEEE transactions on industrial electronics. 2015 Sep 23;63(2):995-1002. [19] Kim S, Lee SH, Lee JS, Kim M. Dual‐mode flyback inverters in grid‐connected photovoltaic systems. IET Renewable Power Generation. 2016 Oct;10(9):1402-12. [20] Kim S, Lee SH, Lee JS, Kim M. Dual‐mode flyback inverters in grid‐connected photovoltaic systems. IET Renewable Power Generation. 2016 Oct;10(9):1402-12. [21] Mousaei, A.; Naderi, Y. Optimal Predictive Torque Distribution Control System to Enhance Stability and Energy Efficiency in Electric Vehicles. Sustainability 2023, 15, 15155. https://doi.org/10.3390/su152015155. [22] Karbasforooshan MS, Monfared M. Multi-resonant indirect digital current control technique for single-phase shunt active power filters. Electric Power Components and Systems. 2019 Aug 9;47(13):1196-202. [23] Mattavelli P, Marafao FP. Repetitive-based control for selective harmonic compensation in active power filters. IEEE Transactions on Industrial Electronics. 2004 Oct 4;51(5):1018-24. [24] Geng H, Zheng Z, Zou T, Chu B, Chandra A. Fast repetitive control with harmonic correction loops for shunt active power filter applied in weak grid. IEEE Transactions on Industry applications. 2019 Jan 25;55(3):3198-206. [25] Pandove G, Singh M. Robust repetitive control design for a three-phase four wire shunt active power filter. IEEE Transactions on Industrial Informatics. 2018 Oct 9;15(5):2810-8. [26] Dogruel M, Çelik HH. Harmonic control arrays method with a real time application to periodic position control. IEEE transactions on control systems technology. 2010 May 6;19(3):521-30. [27] Karbasforooshan MS, Monfared M, Dogruel M. Application of the harmonic control arrays technique to single -phase stand alone inverters. IET Power Electronics. 2016 Jun;9(7):1445-53. [28] Karbasforooshan MS, Monfared M, Dogruel M. Indirect control of single-phase active power filters using harmonic control arrays. In2017 Conference on Electrical Power Distribution Networks Conference (EPDC) 2017 Apr 19 (pp. 143-148). IEEE. [29] Li Y, Oruganti R. A low cost flyback CCM inverter for AC module application. IEEE transactions on Power Electronics. 2011 Aug 18;27(3):1295-303. [30] Edwin FF, Xiao W, Khadkikar V. Dynamic modeling and control of interleaved flyback module-integrated converter for PV power applications. IEEE transactions on industrial electronics. 2013 Apr 16;61(3):1377-88. [31] Sharifi S, Monfared M, Nikbahar A. Highly efficient singlephase direct AC-to-AC converter with reduced semiconductor count. IEEE Transactions on Industrial Electronics. 2020 Feb 5;68(2):1130-8. [32] Choi HS. Transformer Design Consideration for off-line Flyback Converters using Fairchild Power Switch. Fairchild Semiconductor App. Note AN4140. 2004:1-0. [33] Jeong YS, Lee SH, Jeong SG, Kwon JM, Kwon BH. Highefficiency bidirectional grid-tied converter using single power conversion with high-quality grid current. IEEE Transactions on Industrial Electronics. 2017 May 11; 64(11):8504-13. [34] Thang TV, Thao NM, Jang JH, Park JH. Analysis and design of grid-connected photovoltaic systems with multiple-integrated converters and a pseudo-dc-link inverter. IEEE Transactions on industrial electronics. 2013 Sep 9; 61(7):3377-86. [35] Li Y, Oruganti R. A low cost high efficiency inverter for photovoltaic AC module application. In2010 35th IEEE Photovoltaic Specialists Conference 2010 Jun 20 (pp. 002853-002858). IEEE. [36] Li Y, Oruganti R. A flyback-CCM inverter scheme for photovoltaic AC module application. Australian Journal of Electrical and Electronics Engineering. 2009 Jan 1; 6(3):301-9. [37] Mohammadi S, Izadfar HR, Eskandarian N. A simple and highly efficient flyback inverter control strategy for AC module application. IET Power Electronics. 2022 Oct 31 [38] M. Dong and X. Tian, "Dual-Mode interleaved flyback microinverter," 2017 Chinese Automation Congress (CAC), Jinan, China, 2017, pp. 7719-7724, doi: 10.1109/CAC.2017.8244175. [39] Yang Jian and Ye Bingqing, "Accurate modeling and sliding mode control method to improve the current sharing performance for PV grid-connected interleaved flyback mircoinverter," 2016 IEEE International Conference on Power and Renewable Energy (ICPRE), Shanghai, 2016, pp. 558-564, doi: 10.1109/ICPRE.2016.7871138. [40] D. L. Caiza, S. Kouro, F. Flores-Bahamonde and R. Hernandez, "Unfolding PV Microinverter Current Control: Rectified Sinusoidal vs Sinusoidal Reference Waveform," 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 7094-7100, doi: 10.1109/ECCE.2018.8558024. | ||
|
آمار تعداد مشاهده مقاله: 337 تعداد دریافت فایل اصل مقاله: 179 |
||