
تعداد نشریات | 33 |
تعداد شمارهها | 776 |
تعداد مقالات | 7,514 |
تعداد مشاهده مقاله | 12,601,471 |
تعداد دریافت فایل اصل مقاله | 8,522,414 |
بررسی اثرات فرم شهری و عناصر هواشناسی بر آلودگی هوای تهران و تبریز | ||
مجله جغرافیا و توسعه | ||
مقاله 5، دوره 23، شماره 79، خرداد 1404، صفحه 103-132 اصل مقاله (1.42 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22111/gdij.2025.48916.3654 | ||
نویسندگان | ||
پریسا کهراری1؛ شهریار خالدی2؛ قاسم کیخسروی* 3؛ سید جلیل علوی4 | ||
1دانشجوی دکتری آب و هواشناسی، گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران | ||
2استاد آب و هواشناسی، گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران | ||
3استادیار آب و هواشناسی، گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران | ||
4دانشیار جنگلداری، گروه جنگلداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، مازندران، ایران | ||
چکیده | ||
فرم شهری، به طور چشمگیری بر تولید و انتشار آلایندههای هوا تأثیر میگذارد؛ بنابراین شناخت رابطة بین فرم شهری و آلودگی هوا میتواند با بهینهسازی سیاستهای برنامهریزی و مدیریت شهری، پیامدهای مهمی در زمینة بهبود کیفیت هوا داشته باشد. هدف مطالعة حاضر بررسی ارتباط فرم شهری با غلظت آلایندههای CO، NO2، SO2، O3، PM10، PM2.5 و BC در تهران و تبریز و بازخوردهای آبوهوایی آنها در طول 2021 -2015 است. این هدف با محاسبة سنجههای سیمای سرزمین مرتبط با ویژگیهای مختلف فرم شهری شامل اندازه، شکل، تکهتکهشدگی، فشردگی و پراکندگی براساس سری زمانی دادههای کاربری اراضی ماهانه «Dynamic World» با دقت 10 متر در سامانة «گوگلارثانجین» و نرمافزار R4.3.3 و بهکارگیری تحلیل همبستگی اسپیرمن و مدلهای رگرسیون خطی چندگانه (MLR) و جنگل تصادفی (RF) محقق شد. نتایج این پژوهش نشانمیدهد که فرم شهری، نقش بسیار مهمی در تولید و انتشار آلایندههای هوا در شهرهای تهران و تبریز در طول دورة آماری مورد مطالعه ایفا کرده است. علاوه بر این، مکانیسمی که توسط آن فرم شهری بر سطح غلظت آلایندههای هوا در تهران و تبریز تأثیر میگذارد، با توجه به تفاوت در ویژگیهای منطقهای این شهرها از جمله جمعیت، شرایط آبوهوایی و ساختار صنعتی برای برخی از آلایندهها نسبتاً متفاوت است. در تهران پارامترهای هواشناسی دما، بارش و سرعت باد و در تبریز دما و سرعت باد نقش مهمی در ارتباط شاخصهای فرم شهری با غلظت آلایندههای جوی دارند | ||
کلیدواژهها | ||
آلاینده های جوی؛ پارامترهای هواشناسی؛ سنجه های سیمای سرزمین؛ کاربری اراضی؛ جنگل تصادفی | ||
مراجع | ||
اداره کل حفاظت محیط زیست استان آذربایجان شرقی. مرکز پایش و کنترل آلودگی هوای شهر تبریز.
حسینآبادی، نسرین؛ تقی طاووسی؛ عباس مفیدی؛ محمود خسروی (1398). بررسی روند وارونگیهای دمایی کلانشهرهای ایران (تهران، مشهد، و تبریز)، پژوهشهای جغرافیای طبیعی. دوره 51. شماره 4. 713-693.
سازمان هواشناسی کشور. سامانه درخواست دادههای هواشناسی.
سرور، هوشنگ؛ مرضیه اسمعیلپور؛ منصور خیریزاده؛ مهتاب امرایی (1399). تحلیل فضایی مؤلفههای تأثیرگذار بر آلودگی هوای شهر تبریز، مخاطرات محیط طبیعی. دوره 9. شماره 24. 172-151.
https://doi.org/10.22111/jneh.2020.31469.1558
شهرداری تهران. شرکت کنترل کیفیت هوا.
قدمی، مصطفی؛ پریناز یوسفیان (1393). تحلیلی بر تغییرات ساختار فضایی شهر اصفهان با گریزی بر آلودگی هوا، مطالعات و ساختار کارکرد شهری. دوره 2. شماره 8. 86-63.
قدمی، مصطفی؛ هادی عبدالهوند (1397). بررسی تأثیر سناریوهای ساختار فضایی شهر بر آلودگی هوا (نمونه مورد مطالعه: شهر تهران)، جغرافیا و توسعۀ فضای شهری. دوره 5. شماره 1. 280-261.
Bartholomew, K., & Ewing, R (2008). Land use–transportation scenarios and future vehicle travel and land consumption: A meta-analysis. Journal of the American Planning Association, 75(1), 13-27. https://doi.org/10.1080/01944360802508726 Bereitschaft, B., & Debbage, K (2013). Urban form, air pollution, and CO2 emissions in large US metropolitan areas. The Professional Geographer, 65(4), 612-635. https://doi.org/10.1080/00330124.2013.799991 Boehmke, B., & Greenwell, B.M (2019). Hands-on machine learning with R. Chapman and Hall/CRC., 1st Eds, 514p. https://doi.org/10.1201/9780367816377 Brown, C.F., Brumby, S.P., Guzder-Williams, B., Birch, T., Hyde, S.B., Mazzariello, J., Czerwinski, W., Pasquarella, V.J., Haertel, R., Ilyushchenko, S., & Schwehr, K (2022). Dynamic World, Near real-time global 10 m land use land cover mapping. Scientific Data, 9(1), 251. https://doi.org/10.1038/s41597-022-01307-4 Calderón-Garcidueñas, L., & Villarreal-Ríos, R (2017). Living close to heavy traffic roads, air pollution, and dementia. The Lancet, 389(10070), 675-677. https://doi.org/10.1016/S0140-6736(16)32596-X Chen, Y., Li, X., Zheng, Y., Guan, Y., & Liu, X (2011). Estimating the relationship between urban forms and energy consumption: A case study in the Pearl River Delta, 2005–2008. Landscape and urban planning, 102(1), 33-42. https://doi.org/10.1016/j.landurbplan.2011.03.007 Chen, Z., Xie, X., Cai, J., Chen, D., Gao, B., He, B., Cheng, N., & Xu, B (2018). Understanding meteorological influences on PM2.5 concentrations across China: a temporal and spatial perspective. Atmospheric Chemistry and Physics, 18(8), 5343-5358. https://doi.org/10.5194/acp-18-5343-2018 Du, G., Shin, K.J., & Managi, S (2018). Variability in impact of air pollution on subjective well-being. Atmospheric Environment, 183, 175-208. https://doi.org/10.1016/j.atmosenv.2018.04.018 Ene, E., & McGarigal, K (2023). FRAGSTATS User Guidelines. https://www.fragstats.org/index.php/documentation Fan, C., Tian, L., Zhou, L., Hou, D., Song, Y., Qiao, X., & Li, J (2018). Examining the impacts of urban form on air pollutant emissions: Evidence from China. Journal of Environmental Management, 212, 405-414. https://doi.org/10.1016/j.jenvman.2018.02.001 Fan, W., Wang, H., Liu, Y., & Liu, H (2020). Spatio-temporal variation of the coupling relationship between urbanization and air quality: A case study of Shandong Province. Journal of Cleaner Production, 272, 122812. https://doi.org/10.1016/j.jclepro.2020.122812 Fang, C., Wang, S., & Li, G (2015). Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities. Applied energy, 158, 519-531. https://doi.org/10.1016/j.apenergy.2015.08.095 Gao, G., Pueppke, S.G., Tao, Q., Wei, J., Ou, W., & Tao, Y (2023). Effect of urban form on PM2.5 concentrations in urban agglomerations of China: Insights from different urbanization levels and seasons. Journal of Environmental Management, 327, 116953. https://doi.org/10.1016/j.jenvman.2022.116953 Global Modeling and Assimilation Office (GMAO) (2015). MERRA-2 tavg1_2d_aer_Nx: 2d, 1-Hourly, Time-averaged, single-level, Assimilation, Aerosol Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: March 20, 2024. https://doi.org/10.5067/KLICLTZ8EM9D Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, Vol. 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031 Greenwell, B. M., Boehmke, B. C., & Gray, B (2020). Variable Importance Plots-An Introduction to the vip Package. The R Journal, 12(1), 343-366. https://doi.org/10.32614/rj-2020-013 Hankey, S., & Marshall, J.D (2017). Urban form, air pollution, and health. Current environmental health reports, 4, 491-503. https://doi.org/10.1007/s40572-017-0167-7 Hassan, N.A., Hashim, Z., & Hashim, J.H (2016). Impact of climate change on air quality and public health in urban areas. Asia Pacific Journal of Public Health, 28(2_suppl), 38S-48S. https://doi.org/10.1177/1010539515592951 Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K., & Nowosad, J (2019). landscapemetrics: an open‐source R tool to calculate landscape metrics. Ecography, 42(10), 1648-1657. https://doi.org/10.1111/ecog.04617 Higgins, C.D., Adams, M.D., Réquia, W.J., & Mohamed, M (2019). Accessibility, air pollution, and congestion: Capturing spatial trade-offs from agglomeration in the property market. Land Use Policy, 84, 177-191. https://doi.org/10.1016/j.landusepol.2019.03.002 Huang, Q., Xu, C., Jiang, W., Yue, W., Rong, Q., Gu, Z., & Su, M (2021). Urban compactness and patch complexity influence PM2.5 concentrations in contrasting ways: Evidence from the Guangdong-Hong Kong Macao Greater Bay Area of China. Ecological Indicators, 133, 108407. https://doi.org/10.1016/j.ecolind.2021.108407 Huang, Y.D., Hou, R.W., Liu, Z.Y., Song, Y., Cui, P.Y., & Kim, C.N (2019). Effects of wind direction on the airflow and pollutant dispersion inside a long street canyon. Aerosol and Air Quality Research, 19(5), 1152-1171. https://doi.org/10.4209/aaqr.2018.09.0344 Ikram, M., Yan, Z., Liu, Y., & Qu, W (2015). Seasonal effects of temperature fluctuations on air quality and respiratory disease: a study in Beijing. Natural Hazards, 79(2), 833-853. https://doi.org/10.1007/s11069-015-1879-3 Johnson, T., Mol, A.P., Zhang, L., & Yang, S (2017). Living under the dome: Individual strategies against air pollution in Beijing. Habitat International, 59, 110-117. https://doi.org/10.1016/j.habitatint.2016.11.014 Korkmaz, S., Göksülük, D., & Zararsiz, G. Ö. K. M. E. N (2014). MVN: An R package for assessing multivariate normality. The R Journal, 6(2), 151-162. https://doi.org/10.32614/RJ-2014-031 Kuhn, M., & Wickham, H (2020). Tidymodels: A Collection of Packages for Modeling and Machine Learning using Tidyverse Principles. https://doi.org/10.32614/CRAN.package.tidymodels Lee, C (2019). Impacts of urban form on air quality in metropolitan areas in the United States. Computers, Environment and Urban Systems, 77, 101362. https://doi.org/10.1016/j.compenvurbsys.2019.101362 Lee, C (2020). Impacts of multi-scale urban form on PM2.5 concentrations using continuous surface estimates with high-resolution in US metropolitan areas. Landscape and Urban Planning, 204, 103935. https://doi.org/10.1016/j.landurbplan.2020.103935 Li, F., & Zhou, T (2019). Effects of urban form on air quality in China: An analysis based on the spatial autoregressive model. Cities, 89, 130-140. https://doi.org/10.1016/j.cities.2019.01.025 Li, F., Zhou, T., & Lan, F (2021). Relationships between urban form and air quality at different spatial scales: A case study from northern China. Ecological Indicators, 121, 107029. https://doi.org/10.1016/j.landusepol.2022.106155 Liang, Z., Wu, S., Wang, Y., Wei, F., Huang, J., Shen, J., & Li, S (2020). The relationship between urban form and heat island intensity along the urban development gradients. Science of the Total Environment, 708, 135011. https://doi.org/10.1016/j.scitotenv.2019.135011 Lin, B., & Zhu, J (2018). Changes in urban air quality during urbanization in China. Journal of Cleaner Production, 188, 312-321. https://doi.org/10.1016/j.jclepro.2018.03.293 Liu, Y., Arp, H.P.H., Song, X., & Song, Y (2017). Research on the relationship between urban form and urban smog in China. Environment and Planning B: Urban Analytics and City Science, 44(2), 328-342. https://doi.org/10.1177/0265813515624687 Liu, Y., Wu, J., Yu, D., & Ma, Q (2018). The relationship between urban form and air pollution depends on seasonality and city size. Environmental Science and Pollution Research, 25(16), 15554-15567. https://doi.org/10.1007/s11356-018-1743-6 Lu, C., & Liu, Y (2016). Effects of China’s urban form on urban air quality. Urban studies, 53(12), 2607-2623. https://doi.org/10.1016/j.cities.2019.01.025 McCarty, J., & Kaza, N (2015). Urban form and air quality in the United States. Landscape and Urban Planning, 139, 168-179. https://doi.org/10.1016/j.landurbplan.2015.03.008 Miao, Z., Chen, X., & Baležentis, T (2021). Improving energy use and mitigating pollutant emissions across “Three Regions and Ten Urban Agglomerations”: A city-level productivity growth decomposition. Applied Energy, 283, 116296. https://doi.org/10.1016/j.apenergy.2020.116296 Mou, Y., Song, Y., Xu, Q., He, Q., & Hu, A (2018). Influence of urban-growth pattern on air quality in China: A study of 338 cities. International journal of environmental research and public health, 15(9), 1805. https://doi.org/10.3390/ijerph15091805 Mukaka, M. M (2012). A guide to appropriate use of correlation coefficient in medical research. Malawi medical journal, 24(3), 69-71. PMID: 23638278; PMCID: PMC3576830. Ouyang, X., Wei, X., Li, Y., Wang, X.C., & Klemeš, J.J (2021). Impacts of urban land morphology on PM2.5 concentration in the urban agglomerations of China. Journal of Environmental Management, 283, 112000. https://doi.org/10.1016/j.jenvman.2021.112000 Rodríguez, M.C., Dupont-Courtade, L., & Oueslati, W (2016). Air pollution and urban structure linkages: Evidence from European cities. Renewable and Sustainable Energy Reviews, 53, 1-9. https://doi.org/10.1016/j.rser.2015.07.190 Ryu, C (2022). dlookr: Tools for data diagnosis, exploration, transformation. R package version 0.6.2.9001. https://doi.org/10.32614/CRAN.package.dlookr She, Q.,Peng, X., Xu, Q., Long, L., Wei, N., Liu, M., Jia, W., Zhou, T., Han, J., & Xiang, W (2017). Air quality and its response to satellite-derived urban form in the Yangtze River Delta, China. Ecological Indicators, 75, 297-306. https://doi.org/10.1016/j.ecolind.2016.12.045 Shi, K., Li, Y., Chen, Y., Li, L., & Huang, C (2019). How does the urban form-PM2.5 concentration relationship change seasonally in Chinese cities? A comparative analysis between national and urban agglomeration scales. Journal of cleaner production, 239, 118088. https://doi.org/10.1016/j.jclepro.2019.118088 Spearman, C (1961). The proof and measurement of association between two things. In J. J. Jenkins & D. G. Paterson (Eds.), Studies in individual differences: The search for intelligence (45-58). Appleton-Century-Crofts. https://doi.org/10.1037/11491-005 Stankovic, S., Vaskovic, V., Petrovic, N., & Radojicic, Z (2012). Sustainable air pollution management in urban areas caused by traffic: Case study Banja Luka. Technics Technologies Education Management–TTEM, 7(4), 1615-1619. https://rfos.fon.bg.ac.rs/handle/123456789/986 Stekhoven, D. J., & Bühlmann, P (2012). MissForest-non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112-118. https://doi.org/10.1093/bioinformatics/btr597 Stone Jr, B (2008). Urban sprawl and air quality in large US cities. Journal of environmental management, 86(4), 688-698. https://doi.org/10.1016/j.jenvman.2006.12.034 Sun, C., Chen, X., Zhang, S., & Li, T (2022). Can changes in urban form affect PM2.5 concentration? A comparative analysis from 286 prefecture-level cities in China. Sustainability, 14(4), 2187. https://doi.org/10.3390/su14042187 Sun, J., Zhou, T., & Wang, D (2022). Relationships between urban form and air quality: a reconsideration based on evidence from China’s five urban agglomerations during the COVID-19 pandemic. Land Use Policy, 118, 106155. https://doi.org/10.1016/j.landusepol.2022.106155 Tao, Y., Zhang, Z., Ou, W., Guo, J., & Pueppke, S.G (2020). How does urban form influence PM2.5 concentrations: Insights from 350 different-sized cities in the rapidly urbanizing Yangtze River Delta region of China, 1998-2015? Cities, 98, 102581. https://doi.org/10.1016/j.cities.2019.102581 Tian, Y., Yao, X.A., Mu, L., Fan, Q., & Liu, Y (2020). Integrating meteorological factors for better understanding of the urban form-air quality relationship. Landscape Ecology, 35, 2357-2373. https://doi.org/10.1007/s10980-020-01094-6 Waked, A., Afif, C., & Seigneur, C (2015). Assessment of source contributions to air pollution in Beirut, Lebanon: a comparison of source-based and tracer-based modeling approaches. Air Quality, Atmosphere & Health, 8, 495-505. https://doi.org/10.1007/s11869-014-0298-z Wang, D., Zhou, T., & Sun, J (2022). Effects of urban form on air quality: A case study from China comparing years with normal and reduced human activity due to the COVID-19 pandemic. Cities, 131, 104040. https://doi.org/10.1016/j.cities.2022.104040 Wang, J., Wang, S., & Li, S (2019). Examining the spatially varying effects of factors on PM2.5 concentrations in Chinese cities using geographically weighted regression modeling. Environmental pollution, 248, 792-803. https://doi.org/10.1016/j.envpol.2019.02.081 Wang, K.L., Pang, S.Q., Ding, L.L., & Miao, Z (2020). Combining the biennial Malmquist–Luenberger index and panel quantile regression to analyze the green total factor productivity of the industrial sector in China. Science of The Total Environment, 739, 140280. https://doi.org/10.1016/j.scitotenv.2020.140280 Wei, T., & Simko, V.R (2021). Package “Corrplot”: Visualization of a Correlation Matrix (Version 0.92). Package Corrplot for R Software. https://doi.org/10.32614/CRAN.package.corrplot Yin, C., Yuan, M., Lu, Y., Huang, Y., & Liu, Y (2018). Effects of urban form on the urban heat island effect based on spatial regression model. Science of the Total Environment, 634, 696-704. https://doi.org/10.1016/j.scitotenv.2018.03.350 Yuan, M., Song, Y., Huang, Y., Hong, S., & Huang, L (2018). Exploring the association between urban form and air quality in China. Journal of Planning Education and Research, 38(4), 413-426. https://doi.org/10.1177/0739456X17711516 Zaki, S.A., Shuhaimi, S.S., Mohammad, A.F., Ali, M.S.M., Jamaludin, K.R., & Ahmad, M.I (2022). Development of a Prediction Model of the Pedestrian Mean Velocity Based on LES of Random Building Arrays. Buildings, 12(9), 1362. https://doi.org/10.3390/buildings12091362 Zhang, Y., Pang, X., Xia, J., Shao, Q., Yu, E., Zhao, T., She, D., Sun, J., Yu, J., Pan, X., & Zhai, X (2019). Regional patterns of extreme precipitation and urban signatures in metropolitan areas. Journal of Geophysical Research: Atmospheres, 124(2), 641-663. https://doi.org/10.1029/2018JD029718 Zhao, M., Cai, H., Qiao, Z., & Xu, X (2016). Influence of urban expansion on the urban heat island effect in Shanghai. International Journal of Geographical Information Science, 30(12), 2421-2441. https://doi.org/10.1080/13658816.2016.1178389 Zhao, X., Zhou, W., Wu, T., & Han, L (2022). The impacts of urban structure on PM2.5 pollution depend on city size and location. Environmental Pollution, 292, 118302. https://doi.org/10.1016/j.envpol.2021.118302 Zheng, L., & Na, M (2020). A pollution paradox? The political economy of environmental inspection and air pollution in China. Energy Research & Social Science, 70, 101773. https://doi.org/10.1016/j.erss.2020.101773 Zhou, C., Li, S., & Wang, S (2018). Examining the impacts of urban form on air pollution in developing countries: A case study of China’s megacities. International journal of environmental research and public health, 15(8), 1565. | ||
آمار تعداد مشاهده مقاله: 261 تعداد دریافت فایل اصل مقاله: 73 |