تعداد نشریات | 32 |
تعداد شمارهها | 719 |
تعداد مقالات | 7,024 |
تعداد مشاهده مقاله | 11,554,150 |
تعداد دریافت فایل اصل مقاله | 7,911,837 |
بررسی پاسخ اقیانوس به کمفشار حارهای، مبتنی بر تغییرات دمای سطح دریا مطالعه موردی: کمفشار حارهای نیوار در خلیج بنگال) | ||
مخاطرات محیط طبیعی | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 18 دی 1403 | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22111/jneh.2025.50002.2069 | ||
نویسندگان | ||
سیده نسترن هاشمی1؛ مهدی محمدمهدیزاده* 2؛ محمد اکبری نسب3 | ||
1دانشجوی دکتری فیزیک دریا، گروه علوم غیرزیستی جوی و اقیانوسی، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران | ||
2دانشیار، گروه علوم غیرزیستی جوی و اقیانوسی، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران | ||
3دانشیار، گروه فیزیک دریا، دانشکده علوم دریایی و محیطی، دانشگاه مازندران، بابلسر، ایران | ||
چکیده | ||
پدیدههای مختلفی میتوانند باعث تغییر در دمای سطح دریا شوند که از جمله آنها میتوان به ورود آبهای شیرین، باد، تابش خورشید، جریانهای اقیانوسی و تبخیر اشاره کرد. هدف از این مطالعه تعیین آنومالی دمای سطح دریا ناشی از عبور کمفشار حارهای است. طی روزهای 22 تا 27 نوامبر 2020 کمفشار حارهای نیوار در خلیج بنگال رخ داد. نیوار از یک منطقه کمفشار در خلیج بنگال سرچشمه گرفت. براساس گزارش سازمان هواشناسی هند و با استفاده از دادههای مربوط به پارامترهای دمای سطح دریا، مولفهی مداری باد و مولفهی نصفالنهاری باد از محصولات بازتحلیل ERA5 در تاریخ 21 تا 28 نوامبر 2020، به رصد کمفشار حارهای نیوار پرداخته شد. دادههای مذکور به صورت یک روز قبل، یک روز بعد و دوره زمانی رخداد نیوار، با گام زمانی سه ساعت و با قدرت تفکیک مکانی 25/0 درجه (تقریبا 30 کیلومتر) اخذ شدند. با توجه به اینکه دمای سطح دریا نقش مهمی در فرآیندهای اقیانوسی و تغییرات آب و هوایی دارد، تحلیلها نشان داد که با عبور کمفشار نیوار، دما نسبت به روز قبل یک درجه سلسیوس تغییر داشتهاست. ارائه یک چارچوب کلی برای ارزیابی پاسخ اقیانوس به تغییرات کمفشار، میتواند پایهای برای طراحی سامانههای اعلام هشدار و مدیریت بحران در مناطق ساحلی، از جمله سواحل جنوبی ایران باشد. | ||
کلیدواژهها | ||
کمفشار حارهای؛ آنومالی؛ دمای سطح دریا؛ شمال اقیانوس هند؛ ERA5 | ||
مراجع | ||
پگاهفر، نفیسه. (1400). اعتبارسنجی روابط پارامتری محاسبه شدت پتانسیلی برای چرخندهای حارهای شمال غرب اقیانوس هند در بازه اقلیمی 1990-2019. مجله فیزیک زمین و فضا، (2)47، 371-386. doi: 10.22059/jesphys.2021.316954.1007279
حسینی، سیدهنرگس: فتاحی، روح اله: ابراهیمی پاک، نیاز علی: ویسی، شادمان. (1402). برآورد و ارزیابی تبخیر - تعرق مرجع روزانه با استفاده از دادههای بازتحلیل ERA5. مجله تحقیقات آب و خاک ایران، (2)54، 353-368.
doi: 10.22059/IJSWR.2023.352470.669415
ذاکرینژاد، رضا: موحدی، سعید: جهانیان، احسان. (1401). مقایسۀ تغییرات دمای آب دریای عمان و خلیجفارس با دریای خزر با استفاده از تصاویر ماهوارهای. فصلنامه علمی برنامه ریزی فضایی، (4)12، 65-80. doi: 10.22108/SPPL.2023.134287.1665
شجاع، فائزه: خسروی، محمود: شمسیپور، علیاکبر. (1399). تحلیل شرایط همدید چرخندهای حارهای ساگار و میکونو در دریای عرب-سال 2018. فصلنامه علمی- پژوهشی اطلاعات جغرافیایی سپهر، (113)29. 93-112. doi: 10.22131/sepehr.2020.40473
فرمانیفرد، سحر: آلشیخ، علیاصغر: شریف، محمد: علیزاده، دانیال. (1402). پیش بینی مسیر طوفانهای حارهای با استفاده از مدل حافظه طولانی کوتاه-مدت، اندازهگیری تشابه خطوط سیر و اطلاعات زمینهای. نشریه علمی مهندسی فناوری اطلاعات مکانی، 11(2)، 16-1. doi: 10.61186/jgit.11.2.1
ویسی، شادمان: نوری، میلاد: جباری، آناهیتا. (1402). ارزیابی عملکرد پایگاه دادههای WaPOR و ERA5 با هدف برآورد تبخیر و تعرق مرجع در حوضه آبریز دریای خزر. نشریه پژوهش آب در کشاورزی، (2)37، 193-206. doi: 10.22092/JWRA.2023.361653.981.
Arora, K., Dash, P. (2016). Towards dependence of tropical cyclone intensity on sea surface temperature and its response in a warming world. Climate, 4(2), 30. Bender, M. A., Ginis, I., Kurihara, Y. (1993). Numerical simulations of tropical cyclone‐ocean interaction with a high‐resolution coupled model. Journal of Geophysical Research: Atmospheres, 98(D12), 23245-23263. Bhardwaj, P., Pattanaik, D. R., Singh, O. (2019). Tropical cyclone activity over the Bay of Bengal in relation to El Niño‐Southern Oscillation. International Journal of Climatology, 39(14), 5452-5469. Black, P. G. (1983). Ocean temperature changes induced by tropical cyclones. The Pennsylvania State University. Chacko, N. (2023). On the rapid weakening of super-cyclone Amphan over the Bay of Bengal. Ocean Dynamics, 73(6), 359-372. Cui, H., Tang, D., Liu, H., Liu, H., Sui, Y., Lai, Y., Gu, X. (2024). Modeling Ocean Cooling Induced by Tropical Cyclone Wind Pump Using Explainable Machine Learning Framework. IEEE Transactions on Geoscience and Remote Sensing. Dare, R. A., McBride, J. L. (2011). Sea surface temperature response to tropical cyclones. Monthly Weather Review, 139(12), 3798-3808. Emanuel, K. A. (1986). An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. Journal of Atmospheric Sciences, 43(6), 585-605. Emanuel, K. (2018). 100 years of progress in tropical cyclone research. Meteorological Monographs, 59(1), 1-15. Emanuel, K. A., Nolan, D. S. (2004). Tropical cyclone activity and the global climate system. In 26th Conf. on Hurricanes and Tropical Meteorology, 240-241. Gönnert, G., Dube, S. K., Murty, T., Siefert, W. (2001). Global storm surges: theory, observations, and applications. Die küste, 63, 623. Gracy Margret Mary, R., Sannasiraj, S. A., Raju, D. K. (2024). Coastal morphological changes due to the Nivar cyclone on the East Coast of India. Environmental Earth Sciences, 83(2), 83. Gray, W. M. (1968). Global view of the origin of tropical disturbances and storms. Monthly Weather Review, 96(10), 669-700. Han, G., Ma, Z., Chen, N. (2012). Hurricane Igor impacts the stratification and phytoplankton bloom over the Grand Banks. Journal of Marine Systems, 100, 19-25. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., ... Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049. Hu, Y., Song, L., Liu, A., Pan, W. (2008). Climatic characteristics of tropical cyclones landing in China in recent 58 years. Journal of Sun Yat-senUniversity (Social Science Edition), 47(5), 115–121. India Meteorological Department. (2020). Very Severe Cyclonic Storm, “NIVAR” over the Bay of Bengal (22nd -27th November 2020): A Report. Jia, X., Ji, Q., Han, L., Liu, Y., Han, G., Lin, X. (2022). Prediction of sea surface temperature in the East China Sea based on LSTM neural network. Remote Sensing, 14(14), 3300. Karami, S., Ghassabi, Z., Khansalari, S. (2024). Analysis and simulation of three tropical cyclones with different paths in the Arabian Sea. Natural Hazards, 1-26. Korty, R. L., Emanuel, K. A., Scott, J. R. (2008). Tropical cyclone–induced upper-ocean mixing and climate: Application to equable climates. Journal of Climate, 21(4), 638-654. Kotal, S. D., Kundu, P. K., Roy Bhowmik, S. K. (2009). An analysis of sea surface temperature and maximum potential intensity of tropical cyclones over the Bay of Bengal between 1981 and 2000. Meteorological Applications: A journal of forecasting, practical applications, training techniques, and modeling, 16(2), 169-177. Kuttippurath, J., Akhila, R. S., Martin, M. V., Girishkumar, M. S., Mohapatra, M., Sarojini, B. B., ...Chakraborty, A. (2022). Tropical cyclone-induced cold wakes in the northeast Indian Ocean. Environmental Science: Atmospheres, 2(3), 404-415. Mandal, M., Mohanty, U. C., Sinha, P., Ali, M. M. (2007). Impact of sea surface temperature in modulating movement and intensity of tropical cyclones. Natural Hazards, 41, 413-427. Matsuoka, D., Nakano, M., Sugiyama, D., Uchida, S. (2018). Deep learning approach for detecting tropical cyclones and their precursors in the simulation by a cloud-resolving global non-hydrostatic atmospheric model. Progress in Earth and Planetary Science, 5(1), 1-16. Manucharyan, G. E., Brierley, C. M., Fedorov, A. V. (2011). Climate impacts of intermittent upper ocean mixing induced by tropical cyclones. Journal of Geophysical Research: Oceans, 116(C11). McPhaden, M. J., Foltz, G. R., Lee, T., Murty, V. S. N., Ravichandran, M., Vecchi, G. A., ... Yu, L. (2009). Ocean‐atmosphere interactions during cyclone Nargis. EOS, Transactions American Geophysical Union, 90(7), 53-54. Mohanty, S., Bhadoriya, V. S., Chauhan, P. (2023). Upper ocean response to the passage of cyclone Tauktae in the Eastern Arabian Sea using in situ and multi-platform satellite data. Journal of the Indian Society of Remote Sensing, 51(2), 307-320. Peduzzi, P., Chatenoux, B., Dao, H., De Bono, A., Herold, C., Kossin, J., ... Nordbeck, O. (2012). Global trends in tropical cyclone risk. Nature Climate Change, 2(4), 289-294. Prasad, K., Rao, Y. R. (2006). Simulation studies on cyclone track prediction by the quasi-lagrangian model (QLM) in some historical and recent cases in the Bay of Bengal, using global re-analysis and forecast grid-point data sets. SAARC Meteorological Research Centre. Sattar, A. M., Cheung, K. K. (2019). Comparison between the active tropical cyclone seasons over the Arabian Sea and the Bay of Bengal. Int. J. Climatol, 39(14), 5486-5502. Sengupta, D., Goddalehundi, B. R., Anitha, D. S. (2008). Cyclone‐induced mixing does not cool SST in the post‐monsoon north Bay of Bengal. Atmospheric Science Letters, 9(1), 1-6. Srinivas, C. V., Mohan, G. M., Rao, D. B., Baskaran, R., Venkatraman, B. (2017). Numerical simulations with WRF to study the impact of sea surface temperature on the evolution of tropical cyclones over the Bay of Bengal. Tropical cyclone activity over the north Indian Ocean, 259-271. Stoney, L., Walsh, K., Babanin, A. V., Ghantous, M., Govekar, P., Young, I. (2017). Simulated ocean response to tropical cyclones: The effect of a novel parameterization of mixing from unbroken surface waves. Journal of Advances in Modeling Earth Systems, 9(2), 759-780. Stramma, L., Cornillon, P., Price, J. F. (1986). Satellite observations of sea surface cooling by hurricanes. Journal of Geophysical Research: Oceans, 91(C4), 5031-5035. Sun, Y., Zhong, Z., Li, T., Yi, L., Hu, Y., Wan, H., ... Li, Q. (2017). Impact of ocean warming on tropical cyclone size and its destructiveness. Scientific reports, 7(1), 8154. Yanase, W., Satoh, M., Taniguchi, H., Fujinami, H. (2012). Seasonal and intraseasonal modulation of tropical cyclogenesis environment over the Bay of Bengal during the extended summer monsoon. Journal of Climate, 25(8), 2914-2930. YongQiang, C., DanLing, T. (2011). Remote sensing analysis of the impact of typhoons on the environment in the sea area south of Hainan Island. Procedia Environmental Sciences, 10, 1621-1629. Zhang, H., He, H., Zhang, W. Z., Tian, D. (2021). Upper ocean response to tropical cyclones: A review. Geoscience Letters, 8, 1-12. | ||
آمار تعداد مشاهده مقاله: 48 |