| تعداد نشریات | 33 |
| تعداد شمارهها | 799 |
| تعداد مقالات | 7,731 |
| تعداد مشاهده مقاله | 13,796,150 |
| تعداد دریافت فایل اصل مقاله | 9,010,241 |
Parallel synchronization and a RBF neuro-fuzzy system to synchronization of chaotic systems | ||
| Iranian Journal of Fuzzy Systems | ||
| دوره 21، شماره 6، بهمن و اسفند 2024، صفحه 101-126 اصل مقاله (770.62 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22111/ijfs.2025.48808.8609 | ||
| نویسندگان | ||
| Ali Mirzaei1؛ Alireza Nazemi* 2 | ||
| 1Faculty of Mathematical Sciences, Shahrood University of Technology, P.O. Box 3619995161-316, Tel-Fax No:+98-23-32300235, Shahrood, Iran. | ||
| 2Shahrood University of Technology | ||
| چکیده | ||
| In this paper, an intelligent approach based on Radial Basis Function Neural Networks (RBFNNs) is used for synchronization problem between two chaotic systems. In this scheme, parallel systems have been first applied by converting the synchronization problem between two chaotic systems to synchronization problem between their parallel systems. By employing an active control strategy, an Infinite Horizon Optimal Control Problem (IHOCP) is constructed related to the obtained paralleled dynamical models. Using a suitable transformation, the IHOCP is then transformed into an equivalent finite-horizon one. According to Pontryagin Maximum Principle (PMP), the necessary optimality conditions for the finite horizon problem are examined in the form of two-point boundary value problems (TPBVPs). A fuzzy neural network approach that utilizes Radial Basis Functions (RBFs) as its activation functions for one of the hidden layers is established to approximate the solution of the TPBVP. By relying on the ability of RBFNN as function approximator, the trial solutions of variables are substituted in the TPBVP. The obtained algebraic nonlinear equations system is then reduced into an error function minimization problem. A learning scheme via center points of RBFs as training dataset and based on the Levenberg-Marquardt algorithm is employed as the optimizer to derive the adjustable parameters of trial solutions. Some various chaotic systems are synchronized based on numerical simulations to guarantee the capability of the proposed plan. | ||
| کلیدواژهها | ||
| Chaos synchronization؛ parallel synchronization؛ optimal control؛ fuzzy system؛ RBFNN؛ Levenberg-Marquardt algorithm | ||
| مراجع | ||
|
[1] M. A. Abdelkawy, A. Z. M. Amin, A. H. Bhrawy, J. A. T. Machado, A. M. Lopes, Jacobi collocation approximation for solving multi-dimensional Volterra integral equations, International Journal of Nonlinear Sciences and Numerical Simulation, 18(5) (2017), 411-425. https://doi.org/10.1515/ijnsns-2016-0160 [2] M. T. Akter, A. Tarammim, S. Hussen, Chaos control and synchronization of modified Lorenz system using active control and backstepping scheme, Waves in Random and Complex Media, (2023). https://doi.org/10.1080/ 17455030.2023.2205529 [3] G. V. Badalyan, Generalization of Legendre polynomials and some of their applications, Russian, Armenian Summary, 9(3a) (1956), 22. https://doi.org/10.1007/978-3-0348-8685-7-13 [4] F. Behloul, B. P. F. Lelieveldt, A. Boudraa, J. H. C. Reiber, Optimal design of radial basis function neural networks for fuzzy-rule extraction in high dimensional data, Pattern Recognition, 35 (2002), 659-675. https: //doi.org/10.1016/S0031-3203(01)00033-4 [5] A. H. Bhrawy, A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations, Numerical Algorithms, 73(1) (2016), 91-113. https://doi.org/10.1007/s11075-015-0087-2 [6] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, C. S. Zhou, The synchronization of chaotic systems, Physics reports, 366(1-2) (2002), 1-101. https://doi.org/10.1016/S0370-1573(02)00137-0 [7] M. D. Buhmann, Radial basis functions: Theory and implementations, 12 , Cambridge University Press, 2003.
[8] T. L. Carroll, L. M. Pecora, Synchronizing nonautonomous chaotic circuits, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 40(10) (1993), 646-650. https://doi.org/10.1109/82.24616 [9] G. W. Chang, C. I. Chen, Y. F. Teng, Radial-Basis-Function-Based neural network for harmonic detection, IEEE Transactions on Industrial Electronics, 57 (2010), 2171-2179. https://doi.org/10.1109/TIE.2009.2034681 [10] Y. Y. Chen, Y. T. Chang, B. S. Chen, Fuzzy solutions to partial differential equations: Adaptive approach, IEEE Transactions on Fuzzy Systems, 17(1) (2009), 116-127. https://doi.org/10.1109/TFUZZ.2008.2005010 [11] J. Chen, C. Li, X. Yang, Chaos synchronization of the distributed-order Lorenz system via active control and applications in chaotic masking, International Journal of Bifurcation and Chaos, 28(10) (2018), 1850121. https: //doi.org/10.1142/S0218127418501213 [12] S. Chen, J. Lu, Synchronization of an uncertain unified chaotic system via adaptive control, Chaos, Solitons and Fractals, 14(4) (2002), 643-647. https://doi.org/10.1016/S0960-0779(02)00006-1 [13] Y. Cui, H. G. Zhang, Y. Wang, W. Gao, Adaptive control for a class of uncertain strict-feedback nonlinear systems based on a generalized fuzzy hyperbolic model, Fuzzy Sets and Systems, 302 (2016), 52-64. https://doi.org/10. 1016/j.fss.2015.11.015 [14] D. Ding, X. Qian, N. Wang, D. Liang, Synchronization and anti-synchronization of a fractional order delayed memristor-based chaotic system using active control, Modern Physics Letters B, 32(14) (2018), 1850142. https: //doi.org/10.1142/S0217984918501427 [15] L. G. Dominguez, R. A. Wennberg, W. Gaetz, D. Cheyne, O. C. Snead, J. L. P. Velazquez, Enhanced synchrony in epileptiform activity local versus distant phase synchronization in generalized seizures, Journal of Neuroscience, 25(35) (2005), 8077-8084. https://doi.org/10.1523/JNEUROSCI.1046-05.2005 [16] A. Durdu, Y. Uyaroglu, Comparison of synchronization of chaotic Burke-Shaw attractor with active control and integer-order and fractional-order P-C method, Chaos, Solitons and Fractals, 164 (2022), 112646. https://doi. org/10.1016/j.chaos.2022.112646 [17] S. Effati, A. V. Kamyad, R. A. Kamyabi-Gol, On infinite-horizon optimal control problems, Zeitschrift f¨ur Analysis und ihre Anwendungen, 19(1) (2000), 269-278. https://doi.org/10.4171/ZAA/950 [18] S. Effati, A. Nazemi, A new approach for asymptotic stability of the nonlinear ordinary differential equations, Journal of Applied Mathematics and Computing, 25 (2007), 231-244. https://doi.org/10.1007/BF02832349 [19] I. Famelis, A. Donas, G. Galanis, Comparative study of feed forward and radial basis function neural networks for solving an environmental boundary value problem, Results in Applied Mathematics, 16 (2022), 100344. https: //doi.org/10.1016/j.rinam.2022.100344 [20] C. F. Feng, Projective synchronization between two different time-delayed chaotic systems using active control approach, Nonlinear Dynamics, 62(1-2) (2010), 453-459. https://doi.org/10.1007/s11071-010-9733-3 [21] L. Glass, M. C. Mackey, From clocks to chaos: The rhythms of life, Princeton University Press, 1988.
[22] J. M. Gonzalez-Miranda, Amplitude envelope synchronization in coupled chaotic oscillators, Physical Review E, 65(3) (2002), 036232. https://doi.org/10.1103/PhysRevE.65.036232 [23] A. Hadian Rasanan, N. Bajalan, K. Parand, J. Amani Rad, Simulation of nonlinear fractional dynamics arising in the modeling of cognitive decision making using a new fractional neural network, Mathematical Methods in the Applied Sciences, 43 (2020), 1-30. https://doi.org/10.1002/mma.5981 [24] M. Hajipour, A. Jajarmi, Numerical solution of the state-delayed optimal control problems by a fast and accurate finite difference θ-method, Communications in Nonlinear Science and Numerical Simulation, 55 (2018), 265-276. https://doi.org/10.1016/j.cnsns.2017.07.017 [25] C. Hammond, H. Bergman, P. Brown, Pathological synchronization in Parkinson¸as disease: Networks, models and treatments, Trends in Neurosciencesm, 30(7) (2007), 357-364. https://doi.org/10.1016/j.tins.2007.05.004 [26] R. Hermann, A. Krener, Nonlinear controllability and observability, IEEE Transactions on Automatic Control, 22(5) (1977), 728-740. https://doi.org/10.1109/TAC.1977.1101601 [27] K. Hirosawa, S. Kittaka, Y. Oishi, F. Kannari, T. Yanagisawa, Phase locking in a Nd: YVO 4 waveguide laser array using Talbot cavity, Optics Express, 21(21) (2013), 24952-24961. https://doi.org/10.1364/OE.21.024952 [28] M. C. Ho, Y. C. Hung, Synchronization of two different systems by using generalized active control, Physics Letters A, 301(5-6) (2002), 424-428. https://doi.org/10.1016/S0375-9601(02)00987-8 [29] K. Hornick, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Networks, 2(5) (1989), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8 [30] L. Huang, R. Feng, M.Wang, Synchronization of chaotic systems, via nonlinear control, Physics Letters A, 320(4) (2004), 271-275. https://doi.org/10.1016/j.physleta.2003.11.027 [31] L. Jianyu, L. Siwei, Q. Yingjian, H. Yaping, Numerical solution of elliptic partial differential equation using radial basis function neural networks, Neural Networks, 16(5-6) (2003), 729-734. https://doi.org/10.1016/ S0893-6080(03)00083-2 [32] S. Karimi, S. Effati, F. Ghane, The synchronization of chaotic systems applying the parallel synchronization method, Physica Scripta, 94 (2016), 1-20. https://doi.org/10.1088/1402-4896/ab2679 [33] F. Kheyrinataj, A. Nazemi, Fractional Chebyshev functional link neural network-optimization method for solving delay fractional optimal control problems with Atangana–Baleanu derivative, Optimal Control Applications and Methods, 41(3) (2020), 808-832. https://doi.org/10.1002/oca.2572 [34] F. Kheyrinataj, A. Nazemi, Muntz-Legendre neural network construction for solving delay optimal control problems of fractional order with equality and inequality constraints, Soft Computing, 24 (2020), 9575-9594. https://doi. org/10.1007/s00500-019-04465-7 [35] R. Kiruthika, R. Krishnasamy, S. Lakshmanan, M. Prakash, A. Manivannan, Non-fragile sampled-data control for synchronization of chaotic fractional-order delayed neural networks via LMI approach, Chaos, Solitons and Fractals, 169 (2023), 113252. https://doi.org/10.1016/j.chaos.2023.113252 [36] S. Kopeikin, M. Efroimsky, G. Kaplan, Relativistic celestial mechanics of the solar system, John Wiley Sons, 2011. https://doi.org/10.1002/9783527634569 [37] M. Kumar, N. Yadav, Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations, A Survey, Computers and Mathematics with Applications, 62 (2011), 3796-3811. https: //doi.org/10.1016/j.camwa.2011.09.028 [38] C. Liu, L. Liu, T. Liu, A novel three-dimensional autonomous chaos system, Chaos, Solitons and Fractals, 39(4) (2009), 1950-1958. https://doi.org/10.1016/j.chaos.2007.06.079 [39] M. Liu, W. Peng, M. Hou, Z. Tian, Radial basis function neural network with extreme learning machine algorithm for solving ordinary differential equations, Soft Computing, 27 (2023), 3955-3964. https://doi.org/10.21203/ rs.3.rs-1416056/v1 [40] E. N. Lorenz, Deterministic nonperiodic flow, Journal of The Atmospheric Sciences, 20(2) (1963), 130-141. https: //doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 [41] N. Mai-Duy, T. Tran-Cong, Numerical solution of differential equations using multiquadric radial basis function networks, Neural Networks, 14(2) (2001), 185-199. https://doi.org/10.1016/S0893-6080(00)00095-2 [42] S. Mall, S. Chakraverty, Chebyshev neural network based model for solving Lane¸a Emden type equations, Applied Mathematics and Computation, 247 (2014), 100-114. https://doi.org/10.1016/j.amc.2014.08.085 [43] S. Mall, S. Chakraverty, Single layer Chebyshev neural network model for solving elliptic partial differential equations, Neural Processing Letters, 45(3) (2017), 825-840. https://doi.org/10.1007/s11063-016-9551-9 [44] M. Mansoori, A. Nazemi, Solving infinite-horizon optimal control problems of the time-delayed systems by Haar wavelet collocation method, Network: Computation in Neural Systems, 35 (2016), 97-117. https://doi.org/10. 1080/0954898X.2021.1884762 [45] A. K. Mittal, Error analysis and approximation of Jacobi pseudospectral method for the integer and fractional order integro-differential equation, Applied Numerical Mathematics, 171 (2022), 249-268. https://doi.org/10. 1016/j.apnum [46] J. J. Mor´e, The Levenberg-Marquardt algorithm: Implementation and theory, In: Numerical Analysis, Springer, (1978), 105-116. https://doi.org/10.1007/BFb0067700 [47] M. Mortezaee, M. Ghovatmand, A. Nazemi, An application of a fuzzy system for solving time delay fractional optimal control problems with Atangana–Baleanu derivative, Optimal Control Applications and Methods, 43(6) (2022), 1753-1777. https://doi.org/10.1002/oca.2924 [48] M. Mortezaee, M. Ghovatmand, A. Nazemi, Solving variable-order fractional delay differential algebraic equations via fuzzy systems with application in delay optimal control problems, Iranian Journal of Fuzzy Systems, 21(2) (2024), 67-85. https://doi.org/10.22111/IJFS.2024.43498.7646 [49] F. Mostajeran, S. M. Hosseini, Radial basis function neural network (RBFNN) approximation of Cauchy inverse problems of the Laplace equation, Computers and Mathematics with Applications, 141 (2023), 129-144. https: //doi.org/10.1016/j.camwa.2023.04.026 [50] U. Parlitz, L. Junge, August synchronization of chaotic systems, In 1999 European Control Conference (ECC) (4637-4642), IEEE, (1999). https://doi.org/10.1002/3527607455.CH11 [51] L. Perko, Differential equations and dynamical systems, Springer Science Business Media, 7 (2013).
[52] M. Raissi, P. Perdikarism, G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics, 378 (2019), 686-707. https://doi.org/10.1016/j.jcp.2018.10.045 [53] T. Rezazadeh, E. Najafi, Jacobi collocation method and smoothing transformation for numerical solution of neutral nonlinear weakly singular Fredholm integro-differential equations, Applied Numerical Mathematics, 181 (2022), 135-150. https://doi.org/10.21203/rs.3.rs-4186485/v1 [54] R. Roy, Jr. K. Scott Thornburg, Experimental synchronization of chaotic lasers, Physical Review Letters, 72 (2009). https://doi.org/10.1103/PhysRevLett.72.2009 [55] M. G. Rosenblum, A. S. Pikovsky, J. Kurths, Phase synchronization of chaotic oscillators, Physical Review Letters, 76(11) (1996), 1804. https://doi.org/10.1103/PhysRevLett.76.1804 [56] O. E. Rossler, Continuous chaos-four prototype equations, Annals of the New York Academy of Sciences, 316(1) (1979), 376-392. https://doi.org/10.1111/j.1749-6632.1979.tb29482.x [57] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, H. D. Abarbanel, Generalized synchronization of chaos in directionally coupled chaotic systems, Physical Review E, 51(2) (1995), 980. https://doi.org/10.1103/PhysRevE. 51.980 [58] S. J. Russell, P. Norvig, Artificial intelligence - A modern approach, 3rd Edition, Prentice Hall, 2010.
[59] H. Saberi-Nik, P. Rebelo, M. Shamsyeh Zahedi, Solution of infinite horizon nonlinear optimal control problems by piecewise adomian decomposition method, Mathematical Modelling and Analysis, 18(4) (2013), 543-560. https: //doi.org/10.3846/13926292.2013.841598 [60] F. Setoudeh, M. M. Dezhdar, M. Najafi, Nonlinear analysis and chaos synchronization of a memristive-based chaotic system using adaptive control technique in noisy environments, Chaos, Solitons and Fractals, 164 (2022), 112710. https://doi.org/10.1016/j.chaos.2022.112710 [61] L. Shi, X. Yang, Y. Li, Z. Feng, Finite-time synchronization of nonidentical chaotic systems with multiple timevarying delays and bounded perturbations, Nonlinear Dynamics, 83(1-2) (2016), 75-87. https://doi.org/10. 1007/s11071-015-2310-z [62] G. Simone, F. C. Morabito, RBFNN-based hole identification system in conducting plates, IEEE Transactions on Neural Networks, 12(6) (2001), 1445-1454. https://doi.org/10.1109/72.963779 [63] S. Singh, A. T. Azar, Q. Zhu, Multi-switching Master¸a Slave synchronization of nonidentical chaotic systems, In Innovative Techniques and Applications of Modelling, Identification and Control, (321-330) (2018), Springer, Singapore. [64] M. Srivastava, S. P. Ansari, S. K. Agrawal, S. Das, A. Y. T. Leung, Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method, Nonlinear Dynamics, 76(2) (2014), 905-914. https://doi.org/10.1007/s11071-013-1177-0 [65] A. Staiano, R. Tagliaferri, W. Pedrycz, Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering, Neurocomputing, 69 (2006), 1570-1581. https://doi.org/10.1016/j.neucom.2005. 06.014 [66] H. Su, R. Luo, M. Huang, J. Fu, Practical fixed time active control scheme for synchronization of a class of chaotic neural systems with external disturbances, Chaos, Solitons and Fractals, 157 (2022), 111917. https: //doi.org/10.1016/j.chaos.2022.111917 [67] Z. Wang, M. Chen, J. Chen, Solving multiscale elliptic problems by sparse radial basis function neural networks, Journal of Computational Physics, 492 (2023), 112452. https://doi.org/10.1016/j.jcp.2023.112452 [68] L. X. Wang, J. M. Mendel, Fuzzy basis functions, universal approximation, and orthogonal least-squares learning, IEEE Transactions on Neural Networks, 3(5) (1992), 807-814. https://doi.org/10.1109/72.159070 [69] Y. Wang, C. Sun, Z. Wang, J. Sun, Projection synchronization of three-dimensional chaotic systems with active control based on DNA strand displacement, IEEE Transactions on NanoBioscience, 22 (2023), 836-844. https: //doi.org/10.1109/TNB.2023.3241652 [70] E. Wu, X. Yang, Adaptive synchronization of coupled nonidentical chaotic systems with complex variables and stochastic perturbations, Nonlinear Dynamics, 84(1) (2016), 261-269. https://doi.org/10.1007/ S11071-015-2433-2 [71] L. Xiao, Y. Zhang, L. Jia, Y. He, A ZNN-based sliding mode control strategy for solving synchronization problems of chaotic systems with application in memristor oscillator, Journal of the Franklin Institute, 360 (2023), 12101- 12124. https://doi.org/10.1016/j.jfranklin.2023.09.019 [72] X. Yang, Y. Feng, K. F. C. Yiu, Q. Song, F. E. Alsaadi, Synchronization of coupled neural networks with infinitetime distributed delays via quantized intermittent pinning control, Nonlinear Dynamics, 94(3) (2018), 2289-2303. https://doi.org/10.1007/s11071-018-4449-x [73] M. Yavari, A. Nazemi, An efficient numerical scheme for solving fractional infinite-horizon optimal control problems, ISA Transactions, 94 (2019), 108-118. https://doi.org/10.1016/j.isatra.2019.04.016 | ||
|
آمار تعداد مشاهده مقاله: 287 تعداد دریافت فایل اصل مقاله: 193 |
||