
تعداد نشریات | 33 |
تعداد شمارهها | 776 |
تعداد مقالات | 7,515 |
تعداد مشاهده مقاله | 12,610,032 |
تعداد دریافت فایل اصل مقاله | 8,524,213 |
Type-II Fuzzy Inference System-Based Fractional Terminal Sliding Mode Control for Zero-Force Exoskeleton Robots | ||
Iranian Journal of Fuzzy Systems | ||
دوره 21، شماره 6، بهمن و اسفند 2024، صفحه 147-171 اصل مقاله (9.11 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2025.49399.8718 | ||
نویسندگان | ||
Morteza Mirzaee* ؛ Reza Kazemi | ||
Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran. | ||
چکیده | ||
Upper-limb exoskeleton robots have a significant impact on rehabilitation, assistive technology, and human augmentation, as they can restore or enhance human physical abilities. This paper presents a novel control approach, called Adaptive Fractional Integral Terminal Sliding Mode (AFITSM), which combines an exponential reaching law with a unique interval type-2 Fuzzy Inference System (FIS). This controller is designed to achieve zero-force control of a 5-degree-of-freedom upper-limb exoskeleton robot, even in the presence of bounded uncertainties. The controller's integral terminal sliding surface ensures that the system converges in a finite time, allowing the exoskeleton to reach its desired state quickly, which is critical in time-sensitive applications. The exponential switching control term reduces chattering and tracking errors, while the AFITSM controller's adaptability, enabled by the interval type-2 FIS, allows it to adjust its parameters in real-time to handle uncertainties and external disturbances. Numerical simulations demonstrate the effectiveness and superiority of the proposed control method over traditional control approaches. | ||
کلیدواژهها | ||
Zero-Force Control؛ Adaptive Control؛ Fractional Sliding Mode Control؛ Exoskeleton Robot؛ Fuzzy Inference System | ||
مراجع | ||
[1] C. Baishya, M. K. Naik, R. N. Premakumari, Design and implementation of a sliding mode controller and adaptive sliding mode controller for a novel fractional chaotic class of equations, Results Control Optim, 14 (2024), 100338. https://doi.org/10.1016/j.rico.2023.100338 [2] S. Dalla Gasperina, M. Gandolla, V. Longatelli, M. Panzenbeck, B. Luciani, F. Braghin, et al., AGREE: A compliantcontrolled upper-limb exoskeleton for physical rehabilitation of neurological patients, IEEE Transactions on Medical Robotics and Bionics, 5 (2023), 143-154. https://doi.org/10.1109/TMRB.2023.3239888
[3] B. Esmaeili, J. Beyramzad, M. Seyyedrasuli, M. R. S. Noorani, A. Ghanbari, Using fuzzy neural network sliding mode control for human-exoskeleton interaction forces minimization, 2018 IEEE International Conference on Mechatronics and Automation, (2018), 403-410. https://doi.org/10.1109/ICMA.2018.8484461 [4] A. K. Gharehbagh, M. A. L. Khaniki, M. Manthouri, Designing fuzzy type II PID controller for synchronous generator excitation, 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), (2017), 763-767. https://doi.org/10.1109/KBEI.2017.8324899 [5] H. Haibo, W. Heping, S. Junlei, Attitude control for QTR using exponential nonsingular terminal sliding mode control, Journal of Systems Engineering and Electronics, 30 (2019), 191-200. https://doi.org/10.21629/JSEE. 2019.01.18 [6] D. He, H. Wang, Y. Tian, Model-free super-twisting terminal sliding mode controller using sliding mode disturbance observer for n-DOF upper-limb rehabilitation exoskeleton with backlash hysteresis, International Journal of Control, (2023), 1-17. https://doi.org/10.1080/00207179.2023.2173994 [7] A. Hentout, A. Maoudj, A. Kouider, Shortest path planning and efficient fuzzy logic control of mobile robots in indoor static and dynamic environments, Romanian Journal of Information Science and Technology, 27 (2024), 21-36. [8] M. Hosseini, V. Mohammadi, F. Jafari, E. Bamdad, RoboCup 2016 best humanoid award winner team Baset adultsize, RoboCup 2016: Robot World Cup XX 20, Springer Int Publ, 2017, 467-477. https://doi.org/10.1007/ 978-3-319-68792-6_39 [9] Y. Kali, M. Saad, K. Benjelloun, Nonsingular fast terminal second-order sliding mode for robotic manipulators based on feedback linearization, International Journal of Dynamics and Control, 10 (2022), 296-305. https://doi.org/ 10.1007/s40435-021-00810-7 [10] H. B. Kang, J. H. Wang, Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety, ISA Transactions, 52 (2013), 844-852. https://doi.org/10.1016/j.isatra.2013.05.003 [11] A. M. Khan, D. W. Yun, M. A. Ali, K. M. Zuhaib, C. Yuan, J. Iqbal, et al., Passivity based adaptive control for upper extremity assist exoskeleton, International Journal of Control, Automation and Systems, 14 (2016), 291-300. https://doi.org/10.1007/s12555-014-0250-x [12] M. A. Khanesar, J. M. Mendel, Maclaurin series expansion complexity-reduced center of sets type-reduction + defuzzification for interval type-2 fuzzy systems, 2016 IEEE International Conference on Fuzzy Systems (FUZZIEEE), (2016), 1224-1231. https://doi.org/10.1109/FUZZ-IEEE.2016.7737828 [13] M. A. L. Khaniki, S. Esfandiari, M. Manthouri, Speed control of brushless DC motor using fractional order fuzzy PI controller optimized via WOA, 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE), (2020), 431-436. https://doi.org/10.1109/ICCKE50421.2020.9303634 [14] M. A. L. Khaniki, M. Manthouri, K. Safari, Load frequency control using hierarchical Type-II fuzzy controller optimized via Imperialist competitive algorithm, 2023 9th International Conference on Instrumentation Control and Automation (ICA), (2023), 1-5. https://doi.org/10.1109/ICCIA61416.2023.10506378 [15] M. A. L. Labbaf Khaniki, M. Manthouri, M. Ahmadieh Khanesar, Adaptive non-singular fast terminal sliding mode control and synchronization of a chaotic system via interval type-2 fuzzy inference system with proportionate controller, Iranian Journal of Fuzzy Systems, 20 (2023), 171-185. https://doi.org/10.22111/ijfs.2023.39658. 6889 [16] M. A. L. Labbaf Khaniki, M. Salehi Kho, M. Aliyari Shoorehdeli, Control and synchronization of chaotic spur gear system using adaptive non-singular fast terminal sliding mode controller, Transactions of the Institute of Measurement and Control, 44 (2022), 2795-2808. https://doi.org/10.1177/01423312221087578 [17] M. A. Labbaf Khaniki, M. Tavakoli-Kakhki, Adaptive type-II fuzzy nonsingular fast terminal sliding mode controller using fractional-order manifold for second-order chaotic systems, Asian Journal of Control, 24 (2022), 2395-2409. https://doi.org/10.1002/asjc.2653 [18] X. Li, Q. Yang, R. Song, Performance-based hybrid control of a cable-driven upper-limb rehabilitation robot, IEEE Transactions on Biomedical Engineering, 68 (2020), 1351-1359. https://doi.org/10.1109/TBME.2020.3027823 [19] Y. Long, Y. Peng, Extended state observer-based nonlinear terminal sliding mode control with feedforward compensation for lower extremity exoskeleton, IEEE Access, 10 (2021), 8643-8652. https://doi.org/10.1109/ACCESS. 2021.3049879 [20] X. Meng, C. Gao, B. Jiang, H. R. Karimi, An event-triggered sliding mode control mechanism to exponential consensus of fractional-order descriptor nonlinear multi-agent systems, Proc Inst Mech Eng Part I J Syst Control Eng, 238(3) (2024), 532-544. https://doi.org/10.1177/09596518231191398 [21] A. B. W. Miranda, A. Forner-Cordero, Upper limb exoskeleton control based on sliding mode control and feedback linearization, ISSNIP Biosignals Biorobotics Conf. Biosignals Robot. Better Safer Living, IEEE, 2013, 1-6. https: //doi.org/10.1109/BRC.2013.6487460 [22] M. Mirzaee, R. Kazemi, Direct adaptive fractional-order non-singular terminal sliding mode control strategy using extreme learning machine for position control of 5-DOF upper-limb exoskeleton robot systems, Transactions of the Institute of Measurement and Control, (2024). https://doi.org/10.1177/01423312231225605 [23] V. Mohammadi, M. Hosseini, F. Jafari, A. Behboodi, RoboMan: An adult-sized humanoid robot with enhanced performance, inherent stability, and two-stage balance control to facilitate research on humanoids, Robotics, 13 (2024), 10. https://doi.org/10.3390/robotics13100146 [24] H. Pazhooman, M. S. Alamri, R. L. Pomeroy, S. C. Cobb, Foot kinematics in runners with plantar heel pain during running gait, Gait Posture, 104 (2023), 15-21. https://doi.org/10.1016/j.gaitpost.2023.05.019 [25] R. E. Precup, A. T. Nguyen, S. Bla˘zi˘c, A survey on fuzzy control for mechatronics applications, International Journal of Systems Science, 55 (2024), 771-813. https://doi.org/10.1080/00207721.2023.2293486 [26] S. Preitl, R. E. Precup, J. Fodor, B. Bede, Iterative feedback tuning in fuzzy control systems: Theory and applications, Acta Polytech Hungarica, 3 (2006), 81-96.
[27] A. Riani, T. Madani, A. Benallegue, K. Djouani, Adaptive integral terminal sliding mode control for upperlimb rehabilitation exoskeleton, Control Engineering Practice, 75 (2018), 108-117. https://doi.org/10.1016/j. conengprac.2018.02.013 [28] R. C. Roman, R. E. Precup, R. C. David, Second order intelligent proportional-integral fuzzy control of twin rotor aerodynamic systems, Procedia Computer Science, 139 (2018), 372-380. https://doi.org/10.1016/j.procs. 2018.10.277 [29] R. C. Roman, R. E. Precup, E. M. Petriu, A. I. Borlea, Hybrid data-driven active disturbance rejection sliding mode control with tower crane systems validation, Romanian Journal of Information Science and Technology, 27 (2024), 50-64. https://doi.org/10.59277/ROMJIST.2024.1.04 [30] K. Safari, A. Safari, M. Manthouri, Designing an adaptive-intelligent controller for quadcopter based on brain emotional learning, 2023 9th International Conference on Instrumentation Control and Automation (ICA), (2023), 1-5. https://doi.org/10.1109/ICCIA61416.2023.10506364 [31] E. H. F. Van Asseldonk, J. F. Veneman, R. Ekkelenkamp, J. H. Buurke, F. C. T. Van der Helm, H. Van Der Kooij, The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16 (2008), 360-370. https://doi.org/10.1109/ TNSRE.2008.925074 [32] X. Yu, Y. Feng, Z. Man, Terminal sliding mode control-an overview, IEEE Open Journal of the Industrial Electronics Society, 2 (2020), 36-52. https://doi.org/10.1109/OJIES.2020.3040412
[33] F. Zarei, B. Shafai, Consensus of multi-agent singular systems by using an algebraic transformation, 2024 32nd Mediterranean Conference on Control and Automation (MED), (2024). https://doi.org/10.1109/MED61351. 2024.10566145 [34] M. Zhang, G. Song, J. Mao, F. Wang, J. Zhou, A. Song, Chattering suppression and hydrodynamic disturbance estimation of underwater manipulators using adaptive fuzzy sliding mode control, Transactions of the Institute of Measurement and Control, 46 (2024), 155-166. https://doi.org/10.1177/01423312231171212 | ||
آمار تعداد مشاهده مقاله: 126 تعداد دریافت فایل اصل مقاله: 143 |