
تعداد نشریات | 33 |
تعداد شمارهها | 765 |
تعداد مقالات | 7,411 |
تعداد مشاهده مقاله | 12,278,800 |
تعداد دریافت فایل اصل مقاله | 8,389,303 |
Fuzzy portfolio selection with different risk attitudes based on Machine Learning | ||
Iranian Journal of Fuzzy Systems | ||
دوره 22، شماره 1، فروردین و اردیبهشت 2025، صفحه 1-21 اصل مقاله (14.62 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2025.47341.8338 | ||
نویسندگان | ||
Peng Zhang* ؛ Shulin Cui؛ Beibei Du | ||
School of Economics and Management, South China Normal University, Guangzhou 510006, P.R. China | ||
چکیده | ||
In this paper, we define the possibilistic mean, variance and covariance with different risk attitudes and analyses their mathematical property. The mean and variance of the portfolio model are calculated by the fuzzy numbers, which are predicted by the Long-Short Term Memory networks (LSTM), Convolutional Neural Networks (CNN), Support Vector Regression (SVR) and Random Forest (RF). Considering the borrowing constraints, transaction costs and threshold constraints, a new mean and variance fuzzy portfolio selection model with different risk attitudes based on Machine Learning is proposed. Based on the possibilistic measure, the proposed model is transformed into a quadratic programming problem, which is solved by the pivoting algorithm. Finally, the in-sample and out-of-sample comparison analyses of different constraints and different risk attitudes are provided to test the model and the algorithm. | ||
کلیدواژهها | ||
The fuzzy portfolio selection؛ Mean variance؛ Possibilistic measure؛ Different risk attitudes؛ Machine Learning | ||
مراجع | ||
[1] M. Beniwal, A. Singh, N. Kumar, Forecasting long-term stock prices of global indices: A forward-validating genetic algorithm optimization approach for support vector regression, Applied Soft Computing, 145 (2023), 110566. https: //doi.org/10.1016/j.asoc.2023.110566 [2] L. Breiman, Random forests, Machine Learning, 45(1) (2001), 5-32. https://doi.org/10.1023/A:1010933404324
[3] C. Carlsson, R. Full´er, P. Majlender, A possibilistic approach to selecting portfolios with highest utility score, Fuzzy Sets and Systems, 131 (2002), 13-21. https://doi.org/10.1016/S0165-0114(01)00251-2 [4] W. Chen, Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem, Physica A, 429 (2015), 125-139. https://doi.org/10.1016/j.physa.2015.02.060 [5] V. DeMiguel, L. Garlappi, R. Uppal, Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy?, The review of Financial Studies, 22(5) (2009), 1915-1953. https://doi.org/10.1093/rfs/hhm075 [6] X. Deng, S. T. Chen, Fuzzy portfolio with a novel power membership function based on GARCH and black-litterman model, International Journal of Fuzzy Systems, (2024). https://doi.org/10.1007/s40815-024-01777-1 [7] X. Deng, J. X. Chen, X. Wang, F. T. Geng, Non-dominated sorting genetic algorithm-II for possibilistic meansemiabsolute deviation-Yager entropy portfolio model with complex real-world constraints, Mathematics and Computers in Simulation, 202 (2022), 59-78. https://doi.org/10.1016/j.matcom.2022.05.021
[8] M. Deveci, I. Gokasar, D. Pamucar, et al., Evaluation of cooperative intelligent transportation system scenarios for resilience in transportation using type-2 neutrosophic fuzzy VIKOR, Transportation Research Part A: Policy and Practice, 172 (2023), 103666. https://doi.org/10.1016/j.tra.2023.103666 [9] M. Deveci, D. Pamucar, I. Gokasar, et al., Personal mobility in metaverse with autonomous vehicles using Q-rung orthopair fuzzy sets based OPA-RAFSI model, IEEE Transactions in Intelligent Transportation Systems, 24(12) (2023), 15642-15651. https://doi.org/10.1109/TITS.2022.3186294 [10] J. Du, Mean–variance portfolio optimization with deep learning based-forecasts for cointegrated stocks, Expert Systems with Applications, 201 (2022), 117005. https://doi.org/10.1016/j.eswa.2022.117005 [11] T. Fischer, C. Krauss, Deep learning with long short-term memory networks for financial market predictions, European Journal of Operational Research, 270(2) (2018), 654-669. https://doi.org/10.1016/10.1016/j.ejor. 2017.11.054 [12] M. Ghahtarani, A new portfolio selection problem in bubble condition under uncertainty: Application of Z-number theory and fuzzy neural network, Expert Systems with Applications, 177 (2021), 114944. https://doi.org/10. 1016/j.eswa.2021.114944 [13] X. M. Gong, L. Y. Min, C. R. Yu, Multi-period portfolio selection under the coherent fuzzy environment with dynamic risk-tolerance and expected-return levels, Applied Soft Computing, 114 (2022), 108104. https://doi. org/10.1016/j.asoc.2021.108104 [14] B. G¨ulmez, Stock price prediction with optimized deep LSTM network with artificial rabbits optimization algorithm, Expert Systems with Applications, 227 (2023), 120346. https://doi.org/10.1016/j.eswa.2023.120346 [15] F. Z. Habbab, M. Kampouridis, An in-depth investigation of five machine learning algorithms for optimizing mixedasset REITs, Expert Systems with Applications, 235 (2024), 121102. https://doi.org/10.1016/j.eswa.2023. 121102 [16] I. Henriques, P. Sadorsky, Forecasting rare earth stock prices with machine learning, Resources Policy, 86 (2023), 104248. https://doi.org/10.1016/j.resourpol.2023.104248 [17] S. Hochreiter, Long short-term memory, Neural Computation, MIT-Press, 9(8) (1997), 1735-1780. https://doi. org/10.1162/neco.1997.9.8.1735 [18] F. Jeribi, R. J. Martin, R. Mittal, et al., A deep learning based expert framework for portfolio prediction and forecasting, IEEE Access, 12 (2024), 103810-103829. https://doi.org/10.1109/ACCESS.2024.3434528 [19] N. Jha, H. K. Tanneru, S. Palla, et al., Multivariate analysis and forecasting of the crude oil prices: Part I - Classical machine learning approaches, Energy, 296 (2024), 131185. https://doi.org/10.1016/j.energy.2024.131185 [20] M. E. Kharrim, Multi-period fuzzy portfolio optimization model subject to real constraints, EURO Journal on Decision Process, 11 (2023), 100041. https://doi.org/10.1016/j.ejdp.2023.100041 [21] P. Khodaee, A. Esfahanipour, H. M. Taheri, Forecasting turning points in stock price by applying a novel hybrid CNN-LSTM-ResNet model fed by 2D segmented images, Engineering Applications of Artificial Intelligence, 116 (2022), 105464. https://doi.org/10.1016/j.engappai.2022.105464 [22] E. Koo, G. Kim, Centralized decomposition approach in LSTM for Bitcoin price prediction, Expert Systems with Applications, 237 (2024), 121401. https://doi.org/10.1016/j.eswa.2023.121401 [23] P. S. Kumar, Computationally simple and efficient method for solving real-life mixed intuitionistic fuzzy 3D assignment problems, International Journal of Software Science and Computational Intelligence, 14 (2023), 1-42. https://doi.org/10.4018/IJSSCI.291715 [24] Y. LeCun, B. Boser, J. S. Denker, et al., Backpropagation applied to handwritten zip code recognition, Neural Computation, 1(4) (1989), 541-551. https://doi.org/10.1016/j.cie.2023.109023 [25] S. I. Lee, S. J. Yoo, Threshold-based portfolio: The role of the threshold and its applications, The Journal of Supercomputing, 76 (2020), 8040-8057. https://doi.org/10.1007/s11227-018-2577-1 26] Y. Ma, W. Wang, Q. Ma, A novel prediction based portfolio optimization model using deep learning, Computers and Industrial Engineering, 177 (2023), 109023. https://doi.org/10.1016/j.eswa.2021.115822 [27] N. Mansour, M. S. Cherif, W. Abdelfattah, Multi-objective imprecise programming for financial portfolio selection with fuzzy returns, Expert Systems with Applications, 138 (2019), 112810. https://doi.org/10.1016/j.eswa. 2019.07.027 [28] H. M. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. https://doi.org/10.2307/2975974
[29] N. B. Mazraeh, A. Daneshvar, F. R. Roodposhti, Stock portfolio optimization using a combined approach of multi objective grey wolf optimizer and machine learning preselection methods, Computational Intelligence and Neuroscience, 2022(1) (2022), 5974842. https://doi.org/10.1155/2022/5974842 [30] M. K. Mehlawat, A. Kumar, S. Yadav, et al., Data envelopment analysis based fuzzy multi-objective portfolio selection model involving higher moments, Information Sciences, 460-461 (2018), 128-150. https://doi.org/10. 1016/j.ins.2018.05.043 [31] J. K. Pahade, M. Jha, A hybrid fuzzy-SCOOT algorithm to optimize possibilistic mean semi-absolute deviation model for optimal portfolio selection, International Journal of Fuzzy Systems, 24(4) (2022), 1958-1973. https: //doi.org/10.1007/s40815-022-01251-w [32] F. D. Paiva, R. T. N. Cardoso, G. P. Hanaoka, et al., Decision-making for financial trading: A fusion approach of machine learning and portfolio selection, Expert Systems with Applications, 115 (2019), 635-655. https://doi. org/10.1016/j.eswa.2018.08.003 [33] Z. Qin, Random fuzzy mean-absolute deviation models for portfolio optimization problem with hybrid uncertainty, Applied Soft Computing, 56 (2017), 597-603. https://doi.org/10.1016/j.asoc.2016.06.017 [34] M. Rasoulzadeh, S. A. Edalatpanah, M. Fallah, et al. A hybrid model for choosing the optimal stock portfolio under intuitionistic fuzzy sets, Iranian Journal of Fuzzy Systems, 21(2) (2024), 161-179. https://doi.org/10.22111/ IJFS.2024.45118.7968 [35] M. Sharma, H. S. Shekhawat, Portfolio optimization and return prediction by integrating modified deep belief network and recurrent neural network, Knowledge-Based Systems, 250 (2022), 109024. https://doi.org/10. 1016/j.knosys.2022.109024 [36] R. C. Tsaur, C. L. Chiu, Y. Y. Huang, Guaranteed rate of return for excess investment in a fuzzy portfolio analysis, International Journal of Fuzzy Systems, 23(1) (2021), 94-106. https://doi.org/10.1007/s40815-020-00990-y [37] V. Vapnik, Statistical learning theory, John Wiley and Sons Google Scholar, 2 (1998), 831-842. https://doi.org/ 10.2307/1271368 [38] N. Y.Wang, D. Shi, Z. R. Li, et al., Investigating emotional design of the intelligent cockpit based on visual sequence data and improved LSTM, Advanced Engineering Informatics, 61 (2024), 102557. https://doi.org/110.1016/ j.aei.2024.102557 [39] A. P. Zabaleta, P. Fern´andez, J. F. Prados-Castillo, et al., Constructing fuzzy composite indicators to support water policy entrepreneurship, Sustainable Technology and Entrepreneurship, 1(3) (2022), 120346. https://doi.org/ 10.1016/j.stae.2022.100022 [40] P. Zhang, Random credibilitic portfolio selection problem with different convex transaction costs, Soft Computing, 23 (2019), 13309-13320. https://doi.org/10.1007/s00500-019-03873-z [41] P. Zhang, S. L. Dang, The weighted lower and upper admissible mean downside semi-variance portfolio selection, International Journal of Fuzzy Systems, 23 (2021), 1775-1788. https://doi.org/10.1007/s40815-021-01055-4 [42] Y. Zhang, W. L. Liu, X. Y. Yang, An automatic trading system for fuzzy portfolio optimization problem with sell orders, Expert Systems with Applications, 187 (2022), 115822. https://doi.org/10.1016/j.eswa.2023.120346 [43] P. Zhang, W. G. Zhang, Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints, Fuzzy Sets and Systems, 255 (2014), 74-91. https://doi.org/10.1016/j.fss.2014.07. 018 [44] W. G. Zhang, X. L. Zhang, W. L. Xiao, Portfolio selection under possibilistic mean-variance utility and an SMO algorithm, European Journal of Operational Research, 197 (2009), 693-700. https://doi.org/10.1016/j.ejor. 2008.07.011 [45] X. Y. Zhou, J.Wang, X. P. Yang, et al., Portfolio selection with different attitudes in fuzzy environment, Information Sciences, 462 (2018), 278-289. https://doi.org/10.1016/j.ins.2018.06.013 | ||
آمار تعداد مشاهده مقاله: 298 تعداد دریافت فایل اصل مقاله: 595 |