
تعداد نشریات | 33 |
تعداد شمارهها | 776 |
تعداد مقالات | 7,514 |
تعداد مشاهده مقاله | 12,601,358 |
تعداد دریافت فایل اصل مقاله | 8,522,389 |
New characterizations of migrative 2-uninorms | ||
Iranian Journal of Fuzzy Systems | ||
دوره 22، شماره 1، فروردین و اردیبهشت 2025، صفحه 35-47 اصل مقاله (441.75 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2025.49281.8694 | ||
نویسندگان | ||
Shudi Liang1؛ Xue-ping Wang* 2 | ||
1College of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong, P. R. China | ||
2Sichuan Normal University | ||
چکیده | ||
This article pays attention to the $\alpha$-migrativity of 2-uninorms with $\alpha\in [0,1]$ deeply. It describes the $\alpha$-migrativity of 2-uninorms completely, which generalizes and unifies some current existing characterizations for the $\alpha$-migrativity of triangular norms, triangular conorms, uninorms, nullnorms, uni-nullnorms and null-uninorms, respectively. | ||
کلیدواژهها | ||
Uninorm؛ Nullnorm؛ Uni-nullnorm؛ 2-uninorm؛ Migrativity | ||
مراجع | ||
[1] P. Akella, Structure of n-uninorms, Fuzzy Sets and Systems, 158 (2007), 1631-1651. https://doi.org/10.1016/ j.fss.2007.02.015 [2] M. Baczy´nski, B. Jayaram, R. Mesiar, Fuzzy implications: Alpha migrativity and generalised laws of importation, Information Science, 531 (2020), 87-96. https://doi.org/10.1016/j.ins.2020.04.033 [3] M. Budinˇcevi´c, M. Kurili´c, A family of strict and discontinuous triangular norms, Fuzzy Sets and Systems, 95 (1998), 381-384. https://doi.org/10.1016/S0165-0114(96)00284-9 [4] T. Calvo, B. De Baets, J. Fodor, The functional equations of Frank and Alsina for uninorms and nullnorms, Fuzzy Sets and Systems, 120 (2001), 385-394. https://doi.org/10.1016/S0165-0114(99)00125-6 [5] F. Durante, J. Fern´andez-S´anchez, J. J. Quesada-Molina, On the α-migrativity of multivariate semi-copulas, Information Science, 187 (2012), 216-223. https://doi.org/10.1016/j.ins.2011.10.026
[6] F. Durante, P. Sarkoci, A note on the convex combinations of triangular norms, Fuzzy Sets and Systems, 159 (2008), 77-80. https://doi.org/10.1016/j.fss.2007.07.005 [7] J. Fodor, I. J. Rudas, An extension of the migrative property for triangular norms, Fuzzy Sets and Systems, 168 (2011), 70-80. https://doi.org/10.1016/j.fss.2010.09.020 [8] F. M. He, B. W. Fang, Characterizations for the alpha-cross-migrativity of continuous t-conorms over generated implications, Iranian Journal of Fuzzy Systems, 21 (2024), 65-82. https://doi.org/10.22111/IJFS.2023.44829. 7899 [9] M. Hell, F. Gomide, P. Costa, Neurons and neural fuzzy networks based on nullnorms, in: Proceedings of the 10th Brazilian Symposiumon Neural Networks, Salvador, (2008), 123-128. [10] C. Y. Huang, F. Qin, Migrativity properties of uninorms over 2-uninorms, International Journal of Approximate Reasoning, 139 (2021), 104-129. https://doi.org/10.1016/j.ijar.2021.09.008 [11] D. X. Jiang, H. W. Liu, Migrativity of uninorms not internal on the boundary over continuous t-conorms, Iranian Journal of Fuzzy Systems, 21 (2024), 103-121. https://doi.org/10.22111/IJFS.2024.48288.8494 [12] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Academic Publishers, Dordrecht, 2000.
[13] W. H. Li, F. Qin, New results on the migrativity properties for overlap (grouping) functions and uninorms, Iranian Journal of Fuzzy Systems, 18 (2021), 111-128. https://doi.org/10.22111/ijfs.2021.6085 [14] S. D. Liang, X. P. Wang, On the migrativity of 2-uninorms, Fuzzy Sets and Systems, 472 (2023), 108703. https: //doi.org/10.1016/j.fss.2023.108703 [15] X. Luo, N. R. Jennings, A spectrum of compromise aggregation operators for multi-attribute decision making, Artificial Intelligence, 171 (2007), 161-184. https://doi.org/10.1016/j.artint.2006.11.004 [16] M. Mas, M. Monserrat, D. Ruiz-Aguilera, J. Torrens, Migrative uninorms and nullnorms over t-norms and tconorms, Fuzzy Sets and Systems, 261 (2015), 20-32. https://doi.org/10.1016/j.fss.2014.05.012 [17] R. Mesiar, H. Bustince, J. Fern´andez, On the α-migrativity of semicopulas, quasi-copulas, and copulas, Information Science, 180 (2010), 1967-1976. https://doi.org/10.1016/j.ins.2010.01.024 [18] R. Mesiar, V. Nov´ak, Open problems from the 2nd international conference on fuzzy sets theory and its applications, Fuzzy Sets and Systems, 81 (1996), 185-190. https://doi.org/10.1016/0165-0114(95)00209-X [19] F. Qin, D. Ruiz-Aguilera, On the α-migrativity of idempotent uninorms, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 23 (2015), 105-115. https://doi.org/10.1142/S0218488515500051 [20] Y. Su, W. W. Zong, H. W. Liu, P. Xue, Migrativity property for uninorms and semi t-operators, Information Sciences, 325 (2015), 455-465. https://doi.org/10.1016/j.ins.2015.07.030 [21] X. R. Sun, H. W. Liu, The left (right) distributivity of semi-t-operators over 2-uninorms, Iranian Journal of Fuzzy Systems, 17 (2020), 103-116. https://doi.org/10.22111/ijfs.2020.5352 [22] F. Sun, X. B. Qu, A common characterization for migrative uni-nullnorms, Information Sciences, 546 (2021), 627-632. https://doi.org/10.1016/j.ins.2020.08.108 [23] F. Sun, X. B. Qu, L. Zhu, On the migrativity of uni-nullnorms, Journal of Intelligent and Fuzzy Systems, 37 (2019), 5269-5279. https://doi.org/10.3233/JIFS-190377 [24] F. Sun, X. P. Wang, X. B. Qu, Uni-nullnorms and null-uninorms, Journal of Intelligent and Fuzzy Systems, 32 (2017), 1969-1981. https://doi.org/10.3233/JIFS-161495 [25] Y. M.Wang, H. W. Liu, Migrativity equations and Mayor’s aggregation operators, Iranian Journal of Fuzzy Systems, 16 (2019), 41-53. https://doi.org/10.22111/ijfs.2019.4780 [26] Y. M. Wang, F. Qin, Distributivity for 2-uninorms over semi-uninorms, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 25 (2017), 317-345. https://doi.org/10.1142/S0218488517500131 [27] Y. M. Wang, W. W. Zong, H. Zhan, H. W. Liu, On migrative 2-uninorms and nullnorms, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 27 (2019), 303-328. https://doi.org/10.1142/ S0218488519500144 [28] L. M. Wu, Y. Ouyang, On the migrativity of triangular subnorms, Fuzzy Sets and Systems, 226 (2013), 89-98. https://doi.org/10.1016/j.fss.2012.12.013 [29] R. R. Yager, Uninorms in fuzzy system modeling, Fuzzy Sets and Systems, 122 (2001), 167-175. https://doi. org/10.1016/S0165-0114(00)00027-0 [30] R. R. Yager, Defending against strategic manipulation in uninorm-based multi-agent decision making, Fuzzy Sets and Systems, 141 (2002), 217-323. https://doi.org/10.1016/S0377-2217(01)00267-3 [31] R. R. Yager, A. Rybalov, Uninorm aggregation operators, Fuzzy Sets and Systems, 80 (1996), 111-120. https: //doi.org/10.1016/0165-0114(95)00133-6 [32] L. J. Ying, F. Qin, Migrativity properties of 2-uninorms over semi-t-operators, Kybernetika, 58 (2022), 354-375. https://doi.org/10.14736/kyb-2022-3-0354 [33] T. H. Zhang, F. Qin, On distributive laws between 2-uninorms and overlap (grouping) functions, International Journal of Approximate Reasoning, 119 (2020), 353-372. https://doi.org/10.1016/j.ijar.2020.01.008 [34] Y. Y. Zhao, F. Qin, The cross-migrativity equation with respect to semi-t-operators, Iranian Journal of Fuzzy Systems, 18 (2021), 17-33. https://doi.org/10.22111/ijfs.2021.5869 [35] H. J. Zhou, X. Liu, Characterizations of (U2,N)-implications generated by 2-uninorms and fuzzy negations from the point of view of material implication, Fuzzy Sets and Systems, 378 (2020), 79-102. https://doi.org/10.1016/ j.fss.2018.10.015 [36] K. Y. Zhu, J. R. Wang, Y. W. Yang, Migrative uninorms and nullnorms over t-norms and t-conorms revisited, Fuzzy Sets and Systems, 423 (2021), 74-88. https://doi.org/10.1016/j.fss.2020.10.009 [37] W. W. Zong, Y. Su, H. W. Liu, Migrative property for nullnorms, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 22 (2014), 749-759. https://doi.org/10.1142/S021848851450038X [38] W. W. Zong, Y. Su, H. W. Liu, B. D Baets, On the structure of 2-uninorms, Information Science, 467 (2018), 506-527. https://doi.org/10.1016/j.ins.2018.08.008 | ||
آمار تعداد مشاهده مقاله: 143 تعداد دریافت فایل اصل مقاله: 173 |