
تعداد نشریات | 32 |
تعداد شمارهها | 757 |
تعداد مقالات | 7,335 |
تعداد مشاهده مقاله | 12,150,806 |
تعداد دریافت فایل اصل مقاله | 8,300,285 |
Application of Combining Type 2 Fuzzy CMAC Network and Jordan Neural Network in Nonlinear System Control | ||
Iranian Journal of Fuzzy Systems | ||
دوره 22، شماره 2، خرداد و تیر 2025، صفحه 25-39 اصل مقاله (1.81 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2025.50552.8930 | ||
نویسندگان | ||
Loc Tien Le* ؛ Long Kim Ngo | ||
Lac Hong University | ||
چکیده | ||
This paper proposes a new solution for controlling complex nonlinear systems, through the combination of a type 2 fuzzy CMAC controller and Jordan neural network. This method takes advantage of type 2 fuzzy CMAC in dealing with uncertainties and learning ability, while the Jordan neural network helps to enhance the stability and improve the performance of the system. The adaptive learning laws were designed to help the proposed network automatically update the network parameters. The results from simulations and experiments have shown that this method achieves superior accuracy and robustness compared to other methods. When applied to control the Magnetic Levitation System, this method shows great potential in solving complex nonlinear control problems, opening up new approaches in this field. | ||
کلیدواژهها | ||
cerebellar model articulation controller؛ type-2 fuzzy system؛ Jordan neural network؛ adaptive control system | ||
مراجع | ||
[1] M. Abdollahzadeh, M. Pourgholi, Adaptive fuzzy sliding mode control of magnetic levitation system based on interval type-2 fuzzy neural network identification with an extended Kalman–Bucy filter, Engineering Applications of Artificial Intelligence, 130 (2024), 10764. https://doi.org/10.1016/j.engappai.2023.107645 [2] J. S. Albus, A new approach to manipulator control: The cerebellar model articulation controller (CMAC), Journal of Dynamic Systems, Measurement, and Control, 97(3) (1975), 220-227. https://doi.org/10.1115/1.3426922 [3] K. N. Badri, M. Sreekumar, Diagnosing of risk state in subsystems of CNC turning center using interval type-2 fuzzy logic system with semi elliptic membership functions, International Journal of Fuzzy Systems, 78(3) (2021), 1-18. https://doi.org/10.1007/s40815-021-01172-0 [4] J. Bilski, J. Smolag, Parallel approach to learning of the recurrent Jordan neural network, Artificial Intelligence and Soft Computing, 12th International Conference, ICAISC 2013, Zakopane, Poland, I(12) (2013), 32-40. https://doi.org/10.1007/978-3-642-38658-9_3 [5] F. Chao, D. Zhou, C. M. Lin, C. Zhou, M. Shi, D. Lin, Fuzzy cerebellar model articulation controller network optimization via self-adaptive global best harmony search algorithm, Soft Computing, 22(10) (2018), 3141-3153. https://doi.org/10.1007/s00500-017-2864-4 [6] D. Das, A. K. Das, A. R. Pal, S. Jaypuria, D. K. Pratihar, G. G. Roy, Meta-heuristic algorithms-tuned Elman vs. Jordan recurrent neural networks for modeling of electron beam welding process, Neural Processing Letters, 53 (2021), 1647-1663. https://doi.org/10.1007/s11063-021-10471-4 [7] S. Dey, S. Banerjee, J. Dey, Practical application of fractional-order PID controller based on evolutionary optimization approach for a magnetic levitation system, IETE Journal of Research, 69(11) (2022), 8168-8192. https://doi.org/10.1080/03772063.2022.2052983 [8] A. M. El-Nagar, M. El-Bardini, A. A. Khater, A class of general type-2 fuzzy controller based on adaptive alpha-plane for nonlinear systems, Applied Soft Computing, 133 (2023), 109938. https://doi.org/10.1016/j.asoc.2022.109938 [9] M. Ghasemi, M. Kelarestaghi, F. Eshghi, A. Sharifi, T2-FDL: A robust sparse representation method using adaptive type-2 fuzzy dictionary learning for medical image classification, Expert Systems with Applications, 158 (2020), 113500. https://doi.org/10.1016/j.eswa.2020.113500 [10] S. M. Hosseini, M. Manthouri, Type 2 adaptive fuzzy control approach applied to variable speed DFIG based wind turbines with MPPT algorithm, Iranian Journal of Fuzzy Systems, 9(1) (2022), 31-45. https://doi.org10.22111/ijfs.2022.6549 [11] S. Karag¨oz, M. Deveci, V. Simic, N. Aydin, Interval type-2 fuzzy ARAS method for recycling facility location problems, Applied Soft Computing, 102 (2021), 107107. https://doi.org/10.1016/j.asoc.2021.107107 [12] A. Karuppannan, M. Muthusamy, Wavelet neural learning-based type-2 fuzzy PID controller for speed regulation in BLDC motor, Neural Computing and Applications, 33 (2021), 13481-13503. https://doi.org/10.1007/s00521-021-05971-2 [13] A. Kumar, R. Raj, P. Gaidhane, O. Castillo, Artificial bee colony optimized precompensated interval type-2 fuzzy logic controller for a magnetic levitation system, Recent Trends on Type-2 Fuzzy Logic Systems: Theory, Methodology and Applications, Springer, (2023), 43-56. https://doi.org/10.1007/978-3-031-26332-3_4 [14] S. Kumari, S. Aravindakshan, U. Jain, V. C. Srinivasa, Convolutional elman Jordan neural network for reconstruction and classification using attention window, Innovations in Computational Intelligence and Computer Vision: Proceedings of ICICV 2020, Springer, (2021), 173-181. https://doi.org/10.1007/978-981-15-6067-5_20 [15] T. L. Le, N. V. Quynh, S. K. Hong, Multilayer interval type-2 fuzzy controller design for quadcopter unmanned aerial vehicles using Jaya algorithm, IEEE Access, 8 (2020), 181246-181257. https://doi.org/10.1109/ACCESS.2020.3028617 [16] C. M. Lin, M. S. Yang, F. Chao, X. M. Hu, J. Zhang, Adaptive filter design using type-2 fuzzy cerebellar model articulation controller, IEEE Transactions on Neural Networks and Learning Systems, 27(10) (2016), 2084-2094. https://doi.org/10.1109/TNNLS.2015.2491305 [17] S. Lv, Z. Li, J. Huang, P. Shi, A novel interval type-2 fuzzy classifier based on explainable neural network for surface electromyogram gesture recognition, IEEE Transactions on Human-Machine Systems, 53(6) (2023), 955-64. https://doi.org/10.1109/THMS.2023.3310524 [18] M. Manceur, N. Essounbouli, A. Hamzaoui, Second-order sliding fuzzy interval type-2 control for an uncertain system with real application, Transactions on Fuzzy Systems, 20(2) (2012), 262-275. https://doi.org/10.1109/TFUZZ.2011.2172948 [19] S. Mobayen, A. N. Vargas, L. Acho, G. Pujol-V´azquez, D. F. Caruntu, Stabilization of two-dimensional nonlinear systems through barrier-function-based integral sliding-mode control: Application to a magnetic levitation system, Nonlinear Dynamics, 111(2) (2023), 1343-1354. https://doi.org/10.1007/s11071-022-07890-w [20] A. Mohammadzadeh, C. Zhan, K. A. Alattas, F. F. El-Sousy, M. T. Vu, Fourier-based type-2 fuzzy neural network: Simple and effective for high dimensional problems, Neurocomputing, 547 (2023), 126316. https://doi.org/10.1016/j.neucom.2023.126316 [21] A. K. Sahoo, S. K. Mishra, D. S. Acharya, S. Chakraborty, S. K. Swain, A comparative evaluation of a set of bio-inspired optimization algorithms for design of two-DOF robust FO-PID controller for magnetic levitation plant, Electrical Engineering, 105(5) (2023), 3033-3054. https://doi.org/10.1007/s00202-023-01867-7 [22] A. Salimi-Badr, M. Hashemi, H. Saffari, A type-2 neuro-fuzzy system with a novel learning method for Parkinson’s disease diagnosis, Applied Intelligence, 53(12) (2023), 15656-15682. https://doi.org/10.1007/s10489-022-04276-8 [23] M. A. Seto, A. Ma’arif, PID control of magnetic levitation (Maglev) system, Journal of Fuzzy Systems and Control, 1(1) (2023), 25-27. https://doi.org/10.59247/jfsc.v1i1.28 [24] L. Su, X. Ling, Estimating weak pulse signal in chaotic background with Jordan neural network, Complexity, 2020(1) (2020), 3284587. https://doi.org/10.1155/2020/3284587 [25] D. Sundaram, Controllability criteria for type-2 fuzzy fractional-order dynamical system via mittag-leffler matrix function using granular derivative, Iranian Journal of Fuzzy Systems, 21(5) (2024), 133-150. https://doi.org/10.22111/ijfs.2024.47862.8422 [26] J. Tang, Z. Huang, Y. Zhu, J. Zhu, Neural network compensation control of magnetic levitation ball position based on fuzzy inference, Scientific Reports, 12(1) (2022), 1795. https://doi.org/10.1038/s41598-022-05900-w [27] C. Urrea, C. Dom´ınguez, J. Kern, Modeling, design and control of a 4-arm delta parallel manipulator employing type-1 and interval type-2 fuzzy logic-based techniques for precision applications, Robotics and Autonomous Systems, 175 (2024), 104661. https://doi.org/10.1016/j.robot.2024.104661 [28] P. Verma, R. Garg, P. Mahajan, Asymmetrical interval type-2 fuzzy logic control based MPPT tuning for PV system under partial shading condition, ISA Transactions, 100 (2020), 251-263. https://doi.org/10.1016/j.isatra.2020.01.009 [29] P. Vernekar, V. Bandal, Sliding mode control for magnetic levitation systems with mismatched uncertainties using multirate output feedback, International Journal of Dynamics and Control, 11(6) (2023), 2958-2976. https://doi.org/10.1007/s40435-023-01151-3 [30] A. T. Vo, T. N. Truong, H. J. Kang, T. D. Le, A fixed-time sliding mode control for uncertain magnetic levitation systems with prescribed performance and anti-saturation input, Engineering Applications of Artificial Intelligence, 133 (2024), 108373. https://doi.org/10.1016/j.engappai.2024.108373 [31] C. L. Zhang, X. Z. Wu, J. Xu, Particle swarm sliding mode-fuzzy PID control based on maglev system, IEEE Access, 9 (2021), 96337-96344. https://doi.org/10.1109/ACCESS.2021.3095490 | ||
آمار تعداد مشاهده مقاله: 23 تعداد دریافت فایل اصل مقاله: 44 |