
تعداد نشریات | 33 |
تعداد شمارهها | 776 |
تعداد مقالات | 7,518 |
تعداد مشاهده مقاله | 12,636,670 |
تعداد دریافت فایل اصل مقاله | 8,530,537 |
A Method for Flattening Non-Planar Cut-Planes for Enhanced Visualization in Engineering and Medical Applications | ||
Chemical Process Design | ||
دوره 4، شماره 1، شهریور 2025، صفحه 74-85 اصل مقاله (3.98 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22111/cpd.2025.51570.1054 | ||
نویسنده | ||
Ali Imanparast* | ||
Department of Mechanical Engineering, University of Zabol, Zabol, Iran | ||
چکیده | ||
A critical aspect of multidimensional data research lies in its representation. As the dimensionality of data escalates, visualizing and comprehending the underlying information becomes increasingly challenging. One effective approach is to reduce data dimensionality for presentation purposes. Slicing three-dimensional (3D) data yields a two-dimensional (2D) representation of a specific cross-section, a technique widely applied in engineering and medical sciences. Moreover, non-planar sections may offer distinct advantages in particular contexts. In this study, an approach for flattening non-planar cutting planes based on rotational transformations was introduced to enhance the visualization of complex 3D datasets. This method is suitable for flattening both scalar and vector data and offers excellent parallelization capabilities from a computational perspective. The effectiveness of this approach was demonstrated through one example: visualization of fluid flow with heat transfer in a helical pipe with multiple orifices. The results showcase the advantages of the method in providing comprehensive and accessible visualizations, which facilitate enhanced analysis and interpretation of complex geometrical data. | ||
کلیدواژهها | ||
Non-planar cut-plane؛ 3D surface flattening؛ Engineering visualization؛ Tubular systems | ||
مراجع | ||
[1] Ware, C., Stevens, A.H., 2015, Visualizing 3d flow through cutting planes, 2015 ieee scientific visualization conference (scivis), 161–162. https://doi.org/10.1109/SciVis.2015.7429513
[2] Tecplot, Inc., 2024, Tecplot 360 user’s manual. https://tecplot.azureedge.net/products/360/current/360-users-manual.pdf
[3] Paraview development team, 2024, Paraview user’s guide, version 5.12. https://docs.paraview.org/en/latest/UsersGuide/displayingData.html
[4] Comsol ab, 2023, Comsol multiphysics reference manual, version 6.2, stockholm, sweden. https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf
[5] Schroeder, W., Martin, K., Lorensen, B., 2006, The visualization toolkit (4th ed.), kitware.
[6] Alberich-Bayarri, A., 2021, Advanced visualization basics in medical imaging, springer international publishing, cham, 55–66. https://doi.org/10.1007/978-3-030-71885-5_5
[7] Pfister, H., 2005, Hardware-accelerated volume rendering, in: Hansen, C.D., Johnson, C.R. (Eds.), visualization handbook, butterworth-heinemann, burlington, 229–258. https://doi.org/10.1016/B978-012387582-2/50013-7
[8] Zhang, Q., Eagleson, R., Peters, T.M., 2011, Volume visualization: a technical overview with a focus on medical applications, journal of digital imaging, 24 (4), 640–664. https://doi.org/10.1007/s10278-010-9321-6
[9] Lasso, A., 2017, Volumeclip, 3d slicer extension. https://www.slicer.org/w/index.php?title=Documentation/Nightly/Extensions/VolumeClip&oldid=54933
[10] Floater, M., Hormann, K., 2002, Parameterization of triangulations and unorganized points, springer berlin heidelberg, berlin, heidelberg, 287–316. https://doi.org/10.1007/978-3-662-04388-2_11
[11] Floater, M.S., Hormann, K., 2005, Surface parameterization: a tutorial and survey, in: Dodgson, N.A., Floater, M.S., Sabin, M.A. (Eds.), advances in multiresolution for geometric modelling, springer berlin heidelberg, berlin, heidelberg, 157–186. https://doi.org/10.1007/3-540-26808-1_9
[12] Sheffer, A., Praun, E., Rose, K., 2006, Mesh parameterization methods and their applications, foundations and trends in computer graphics and vision, 2 (2), 105–171. https://doi.org/10.1561/0600000011
[13] Zhang, Q., Hou, J., Wang, W., He, Y., 2024, Flatten anything: unsupervised neural surface parameterization, arXiv:2405.14633. https://doi.org/10.48550/arXiv.2405.14633
[14] Liu, Q., Xi, J., Wu, Z., 2013, An energy-based surface flattening method for flat pattern development of sheet metal components, the international journal of advanced manufacturing technology, 1155–1166. https://doi.org/10.1007/s00170-013-4908-y
[15] Liu, X., Li, S., Zheng, X., Lin, M., 2016, Development of a flattening system for sheet metal with free-form surface, advances in mechanical engineering, 8(2), 1–12. https://doi.org/10.1177/1687814016630517
[16] Wei, P., Kai, Q., Yidong, B., Chaoyang, Z., Weixi, J., 2022, Free-form surface flattening based on rigid registration and energy optimization, international journal of precision engineering and manufacturing, 23 (8), 921–927. https://doi.org/10.1007/s12541-022-00683-6
[17] Zheng, P.-F., Lou, J.-J., Lin, D.-J., An, Q., 2021, A curved surface flattening computing method combined with machining process, in: Cheng, L.-Y. (Ed.), icgg 2020 - proceedings of the 19th international conference on geometry and graphics, springer international publishing, cham, 186–198. https://doi.org/10.1007/978-3-030-63403-2_17
[18] Zheng, P., Liu, Q., Lou, J., Lian, C., Lin, D., 2022, A free-form surface flattening algorithm that minimizes geometric deformation energy, iet image processing (march), 2544–2556. https://doi.org/10.1049/ipr2.12508
[19] Kreiser, J., Meuschke, M., Mistelbauer, G., Preim, B., Ropinski, T., 2018, A survey of flattening-based medical visualization techniques, computer graphics forum, 37 (3), 597–624. https://doi.org/10.1111/cgf.13445
[20] Kanitsar, A., Fleischmann, D., Wegenkittl, R., Felkel, P., Groller, E., 2002, Cpr - curved planar reformation, IEEE visualization 2002 (vis 2002), 37–44. https://doi.org/10.1109/VISUAL.2002.1183754
[21] Kanitsar, A., Wegenkittl, R., Fleischmann, D., Groller, M., 2003, Advanced curved planar reformation: flattening of vascular structures, ieee visualization 2003 (vis 2003), 43–50. https://doi.org/10.1109/VISUAL.2003.1250353
[22] Saroul, L., Figueiredo, O., Hersch, R., 2006, Distance preserving flattening of surface sections, ieee transactions on visualization and computer graphics, 12 (1), 26–35. https://doi.org/10.1109/TVCG.2006.7
[23] Karim, R., Ma, Y., Jang, M., Housden, R.J., Williams, S.E., Chen, Z., Ataollahi, A., Althoefer, K., Rinaldi, C.A., Razavi, R., O’Neill, M.D., Schaeftter, T., Rhode, K.S., 2014, Surface flattening of the human left atrium and proof-of-concept clinical applications, computerized medical imaging and graphics, 38 (4), 251–266. https://doi.org/10.1016/j.compmedimag.2014.01.004
[24] Wesenberg, J.H., 2024, Tubeplot. https://www.mathworks.com/matlabcentral/fileexchange/5562-tubeplot
[25] Li, X., Iyengar, S.S., 2014, On computing mapping of 3d objects: a survey, acm computing surveys (csur), 47 (2), 1–45. https://doi.org/10.1145/266802 | ||
آمار تعداد مشاهده مقاله: 37 تعداد دریافت فایل اصل مقاله: 18 |