
تعداد نشریات | 33 |
تعداد شمارهها | 775 |
تعداد مقالات | 7,506 |
تعداد مشاهده مقاله | 12,573,576 |
تعداد دریافت فایل اصل مقاله | 8,511,509 |
A Novel Approach to Time-Fractional Equations using Fuzzy Beta Laplace Transform Iterative Technique and its Applications in Fluid Dynamics | ||
Iranian Journal of Fuzzy Systems | ||
دوره 22، شماره 3، مرداد و شهریور 2025، صفحه 1-19 اصل مقاله (4.37 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2025.50308.8872 | ||
نویسندگان | ||
Mohammad Rasoul Mastani Shabestari* 1؛ Nasser Mikaeilvand2 | ||
1Department of Mathematics, Sufian Branch, Islamic Azad University, Sufian, Iran. | ||
2Central Tehran branch, Islamic Azad University, Tehran, Iran. | ||
چکیده | ||
This work proposes a novel approach for modeling complex systems with uncertain data using fuzzy calculus and linear time-fractional differential equations. We provide the fuzzy beta generalized Hukuhara derivative, which maintains inherent uncertainties without transforming fuzzy issues into precise formulations, improving both accuracy and interpretability. We present a fuzzy beta Laplace transform iterative approach to solve fuzzy linear time-fractional equations in fluid dynamics effectively. Case studies, including the fuzzy time-fractional diffusion and advection-dispersion equations, demonstrate the effectiveness of our strategy in capturing system dynamics under uncertainty. This study enhances the amalgamation of fuzzy calculus and fractional modeling, offering a solid foundation for the analysis of uncertain complex systems. | ||
کلیدواژهها | ||
Fuzzy time-fractional oxygen diffusion equation؛ The fuzzy beta generalized Hukuhara time-fractional derivative؛ The fuzzy beta-Laplace transform iterative method؛ Fuzzy time-fractional diffusion equation | ||
مراجع | ||
[1] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Analysis: Theory, Methods and Applications, 72(6) (2010), 2859-2862. https://doi. org/10.1016/j.na.2009.11.029 [2] T. Allahviranloo, Fuzzy fractional differential operators and equations: Fuzzy fractional differential equations, Springer, 2020. https://doi.org/10.1007/978-3-030-51272-9 [3] T. Allahviranloo, A. Armand, Z. Gouyandeh, Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, Journal of Intelligent and Fuzzy Systems, 26(3) (2014), 1481-1490. https://doi.org/10.3233/ IFS-130831 [4] T. Allahviranloo, Z. Gouyandeh, A. Armand, A. Hasanoglu, On fuzzy solutions for the heat equation based on generalized Hukuhara differentiability, Fuzzy Sets and Systems, 265 (2015), 1-23. https://doi.org/10.1016/j. fss.2014.11.009 [5] T. Allahviranloo, S. Salahshour, S. Abbasbandy, Explicit solutions of fractional differential equations with uncertainty, Soft Computing, 16(2) (2012), 297-302. https://doi.org/10.1007/s00500-011-0743-y [6] M. Al-Smadi, O. A. Arqub, D. Zeidan, Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications, Chaos, Solitons and Fractals, 146 (2021), 110891. https://doi.org/10.1016/j.chaos.2021.110891 [7] A. Armand, T. Allahviranloo, Z. Gouyandeh, Some fundamental results on fuzzy calculus, Iranian Journal of Fuzzy Systems, 15 (2013), 27-46. https://doi.org/10.22111/ijfs.2018.3948 [8] A. Atangana, Derivative with a new parameter: Theory, methods and applications, Academic Press, 2016. https: //doi.org/10.1016/C2014-0-04844-7 [9] A. A. Azzam, Spherical fuzzy and soft topology: Some applications, Journal of Mathematics and Computer Science, 32(2) (2024), 152-159. http://dx.doi.org/10.22436/jmcs.032.02.05 [10] B. Bede, Mathematics of fuzzy sets and fuzzy logic, Springer, 2013. https://doi.org/10.1007/ 978-3-642-35221-8 [11] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230(1) (2013), 119-141. https://doi.org/10.1016/j.fss.2012.10.003 [12] Z. Eidinejad, R. Saadati, R. Mesiar, P. Raja, Applications of special functions to approximate stochastic bihomomorphisms and stochastic bi-derivations in FB-algebras and FC-⋄-algebras of the matrix type, Mathematics, 11(6) (2023), 1329. https://doi.org/10.3390/math11061329 [13] Z. Eidinejad, R. Saadati, D. O’Regan, F. S. Alshammari, Measure of quality and certainty approximation of functional inequalities, AIMS Mathematics, 9(1) (2024), 2022-2031. https://doi.org/10.3934/math.2024100 [14] Z. Eidinejad, R. Saadati, H. M. Srivastava, The Cauchy-optimal stability results for Cauchy-Jensen additive mappings in the fuzzy Banach space and the unital fuzzy Banach space, Axioms, 12(4) (2023), 405. https: //doi.org/10.3390/axioms12040405 [15] R. Ezzati, K. Maleknejad, E. Fathizadeh, CAS wavelet function method for solving Abel equations with error analysis, International Journal of Research in Industrial Engineering, 6(4) (2017), 350-364. https://doi.org/10. 22105/riej.2017.100538.1017 [16] R. Ezzati, S. Zabihi, Fuzzy fractional calculus: A comprehensive overview with a focus on weighted Caputo-type generalized Hukuhara differentiability and analytical solutions for fuzzy fractional differential equations, Iranian Journal of Fuzzy Systems, 21(2) (2024), 19-34. https://doi.org/10.22111/ijfs.2024.45607.8045 [17] M. Friedman, M. Ma, A. Kandel, Numerical solutions of fuzzy differential and integral equations, Fuzzy Sets and Systems, 106(1) (1999), 35-48. https://doi.org/10.1016/S0165-0114(98)00355-8 [18] Z. Gouyandeh, T. Allahviranloo, S. Abbasbandy, A. Armand, A fuzzy solution of the heat equation under generalized Hukuhara differentiability by fuzzy Fourier transform, Fuzzy Sets and Systems, 309 (2017), 81-97. https://doi. org/10.1016/j.fss.2016.04.010 [19] H. Hashemi, R. Ezzati, N. M. Mikaeilvand, M. Nazari, Fuzzy time-fractional advection-dispersion and Navier- Stokes equations: A comprehensive approach, Iranian Journal of Fuzzy Systems, 21(5) (2024), 105-119. https: //doi.org/10.22111/ijfs.2024.48569.8574 [20] M. Keshavarz, T. Allahviranloo, Fuzzy fractional diffusion processes and drug release, Fuzzy Sets and Systems, 436 (2022), 82-101. https://doi.org/10.1016/j.fss.2021.04.001 [21] S. Khakrangin, T. Allahviranloo, N. Mikaeilvand, S. Abbasbandy, Numerical solution of fuzzy fractional differential equation by Haar wavelet, Applications and Applied Mathematics: An International Journal (AAM), 16(1) (2021), Article 14. Available at: https://digitalcommons.pvamu.edu/aam/vol16/iss1/14 [22] R. Khaliq, P. Iqbal, S. Bhat, R. Singh, S. Jain, P. Agarwal, Generalized Hukuhara derivative approach for Gompertz tumor growth with Allee effect under fuzzy environment, Journal of Fuzzy Extension and Applications, 4(4) (2023), 246-256. https://doi.org/10.22105/jfea.2023.422105.1310 [23] V. A. Khan, O. Kisi, R. Akbiyik, New types of convergence of double sequences in neutrosophic fuzzy G-metric spaces, Journal of Mathematics and Computer Science, 17(4) (2024), 150-179. https://dx.doi.org/10.22436/ jnsa.017.04.01 [24] M. Khasteh, Sh. Refahi, H. Amir, F. Shariffar, A novel numerical approach for distributed order time fractional COVID-19 virus model, Journal of Applied Research on Industrial Engineering, 9(4) (2022), 442-453. https: //doi.org/10.22105/jarie.2022.305182.1381 [25] S. Kumar, Numerical solution of fuzzy fractional diffusion equation by Chebyshev spectral method, Numerical Methods for Partial Differential Equations, 38(3) (2022), 490-508. https://doi.org/10.1002/num.22650 [26] V. Lakshmikantham, T. Bhaskar, J. Devi, Theory of set differential equations in metric spaces, Cambridge Scientific Publishers, 2006. [27] M. Nadeem, S. A. Edalatpanah, I. Mahariq, W. H. F. Aly, Analytical view of nonlinear delay differential equations using Sawi iterative scheme, Symmetry, 14(11) (2022), 2430. https://doi.org/10.3390/sym14112430 [28] R. Nawaz, N. Fewster-Young, N. M. Katbar, N. Ali, L. Zada, R. W. Ibrahim, W. Jamshed, H. Alqahtani, Numerical inspection of (3+1)-perturbed Zakharov-Kuznetsov equation via fractional variational iteration method with Caputo fractional derivative, Numerical Heat Transfer, Part B: Fundamentals, 85(9) (2023), 1162-1177. https://doi.org/ 10.1080/10407790.2023.2262123 [29] M. R. Nourizadeh, N. Mikaeilvand, T. Allahviranloo, Existence and uniqueness solutions of fuzzy integrationdifferential mathematical problem by using the concept of generalized differentiability, AIMS Mathematics, 4(5) (2019), 1430-1449. https://doi.org/10.3934/math.2019.5.1430 [30] N. H. M. Qumami, R. S. Jain, B. S. Reddy, On the existence for impulsive fuzzy nonlinear integro-differential equations with nonlocal condition, Journal of Mathematics and Computer Science, 32(1) (2024), 13-24. http: //dx.doi.org/10.22436/jmcs.032.01.02 [31] C. Tzimopoulos, N. Samarinas, B. Papadopoulos, C. Evangelides, Fuzzy analytical solution of horizontal diffusion equation into the vadose zone, Hydrology, 10 (2023), 107. https://doi.org/10.3390/hydrology10050107 [32] N. Van Hoa, Fuzzy fractional functional differential equations under Caputo gH-differentiability, Communications in Nonlinear Science and Numerical Simulation, 22(1-3) (2015), 1134-1157. https://doi.org/10.1016/j.cnsns. 2014.08.006 [33] H. Viet Long, N. Thi Kim Son, H. Thi Thanh Tam, The solvability of fuzzy fractional partial differential equations under Caputo gH-differentiability, Fuzzy Sets and Systems, 309 (2017), 35-63. https://doi.org/10.1016/j.fss. 2016.06.018 [34] H. Y´epez-Mart´ınez, J. F. G´omez-Aguilar, M. Inc, New modified Atangana-Baleanu fractional derivative applied to solve nonlinear fractional differential equations, Physica Scripta, 98(3) (2023), 035202. https://doi.org/10. 1088/1402-4896/acb591 | ||
آمار تعداد مشاهده مقاله: 149 تعداد دریافت فایل اصل مقاله: 290 |