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An earthquake is a sudden and destructive natural disaster that often results in 

unpredictable damage to human life and property. Investigating the effects of earthquakes 

on buildings and enhancing the seismic performance of structures is a crucial approach 

to mitigating severe damage during such events. One effective tool in testing the 

resistance of structures against earthquakes is the use of shaking tables. In this paper, the 

stabilization and control of an earthquake simulator using a fuzzy sliding mode controller 

(FSMC), an adaptive unscented Kalman filter (AUKF), and an adaptive extended Kalman 

filter (AEKF) are presented. These filters employ a recursive technique to effectively 

adjust the noise covariance by utilizing an adaptation method known as the steepest 

descent. In the proposed approach, the shaking table states are estimated using an 

accelerometer, encoder, and camera. These estimated states are then utilized by the 

AEKF/AUKF to stabilize and control the closed-loop system. A fuzzy sliding mode 

controller is designed to track the reference input and eliminate external disturbances and 

noise. In sliding mode control, the occurrence of chattering in the control input is 

unavoidable. To mitigate this undesired chattering phenomenon, a fuzzy inference 

mechanism has been employed. The image processing approach has been utilized to 

measure the displacement online using the camera. The advantages of using the camera 

include not requiring direct contact with the table, as well as offering a low cost and good 

accuracy. The performance of the proposed method has been examined using the shaking 

table at the Research Center of Arak University. The obtained results indicate that the 

suggested method exhibits a high level of efficiency. 

NOMENCLATURE  β Viscous damping coefficient 

F Linear force Te Electromagnetic torque 
p  Number of pole pairs ueq Equivalent control input 

d
i , qi  Currents on the d and q axes usw  

 

Switching control input 

d
v  , qv  Voltages on the d and q axes Tl Load torque 

T  Torque of motor  λ Flux amplitude 

Ld,Lq Inductances on d- and q-axes η Ball-screw efficiency 

R Motor winding resistance h Lead of the ball screw 

Ω Angular velocity of the rotor M Total mass of the stage 

Θ Angular displacement of the motor shaft φ Boundary layer thickness in FSMC 

J Moment of inertia s Sliding surface variable 

  Ball-screw efficiency des
  Desired acceleration signal 

x
 

Tracking error  I
 

Image matrix 
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I. Introduction 

Seismic shake tables serve as indispensable tools for 

studying the dynamic response of structures subjected to 

earthquake-like excitations [1–2]. Depending on the 

application scale and power requirements, these systems 

typically employ hydraulic or electric actuation[3-4]. 

Hydraulic mechanisms, characterized by high power density 

and large stroke capability, are favored for large-scale 

shaking tables, while electric actuation is generally restricted 

to smaller laboratory setups [5-6]. 

Despite substantial advancements in actuation technology 

and control system design, accurately reproducing complex 

seismic excitations, particularly acceleration profiles, 

remains a formidable challenge [7–9]. Small displacement 

tracking errors can magnify through differentiation, leading 

to significant inaccuracies in acceleration reproduction. 

Furthermore, factors such as mechanical backlash, 

environmental disturbances, system nonlinearities, and 

sensor imperfections exacerbate this difficulty [10-12]. 

Previous studies have attempted to improve shaking table 

performance through various control strategies, including 

feedforward compensation [13], iterative learning control 

(ILC) [14], and adaptive control techniques such as minimal 

control synthesis and model reference adaptive control [15–

18]. Additionally, robust controllers like sliding mode 

control (SMC) have been explored to address system 

uncertainties and disturbances [19–20]. Despite the success 

of these methods, they often face limitations: conventional 

Kalman filtering approaches assume fixed noise statistics, 

making them vulnerable to model mismatches and variations 

in measurement noise. While SMC approaches offer 

robustness, they suffer from undesirable chattering 

phenomena, which can compromise actuator lifespan and 

energy efficiency [21-23]. Furthermore, traditional sensor 

setups that rely heavily on encoders are prone to mechanical 

degradation, high costs, and installation complexity. Thus, a 

critical research gap exists: the lack of an integrated 

approach that simultaneously addresses sensor noise, 

dynamic system uncertainties, and controller chattering in a 

practical, cost-effective manner. This study proposes a novel 

solution by combining adaptive sensor fusion techniques 

with an intelligent robust control strategy to achieve superior 

tracking performance [24-26].   

   In recent years, artificial intelligence (AI)-based control 

strategies—such as fuzzy logic, neural networks, and 

adaptive neuro-fuzzy inference systems   have attracted 

considerable interest in the field of seismic control of 

shaking tables due to their ability to manage nonlinear 

dynamics and model uncertainties effectively [27, 28]. These 

methods provide adaptive learning mechanisms that can 

enhance robustness and suppress undesirable chattering 

phenomena typically observed in classical sliding mode 

controllers [29].  Despite these advantages, AI-based control 

approaches are not without limitations. They often require 

large datasets for training, exhibit sensitivity to sensor noise, 

and can encounter challenges in real-time applications due 

to their computational demands. Moreover, their 

performance is highly dependent on appropriate design 

choices, such as the tuning of membership functions in fuzzy 

systems or the architecture of neural networks. Additionally, 

unlike conventional model-based techniques, providing 

formal stability guarantees for AI-based controllers remains 

an ongoing challenge [30].  Recent advancements, 

particularly in deep learning, have further expanded the 

potential of AI in control applications. Methods such as deep 

reinforcement learning and neural adaptive controllers have 

demonstrated superior performance in managing highly 

nonlinear and time-varying systems, particularly in high-

uncertainty environments [31–33]. Nevertheless, the 

application of these advanced techniques to shake table 

control is still in its early stages and presents a promising 

direction for future research [34].  

    Motivated by the aforementioned challenges, This 

paper presents the design and implementation of a fuzzy 

sliding mode controller integrated with adaptive 

estimation filters—namely the AEKF and AUKF—for a 

laboratory-scale seismic shake table system. The primary 

objective is to develop an efficient control strategy 

capable of accurately tracking scaled earthquake 

excitations, even in the presence of parameter 

uncertainties and unmodeled dynamics. Particular 

emphasis is placed on acceleration tracking performance 

throughout the study.  The proposed control framework 

integrates measurements from encoder sensors, a vision-

based camera system, and an accelerometer using the 

AEKF/AUKF to estimate the system states. These 

estimated states are then used within the FSMC to ensure 

precise trajectory tracking. The authors believe that the 

full integration of the AEKF/AUKF measurement fusion 

filter and FSMC, along with the corresponding hardware 

and software implementation, constitutes an innovative 

and cost-effective solution. This framework holds 

significant potential for future deployment in commercial 

shake tables used in earthquake engineering applications.  

The main contributions of this paper are summarized as 

follows: 

Adaptive Sensor Fusion: Development of a multi-sensor 

fusion system combining MEMS accelerometers, encoders, 

and vision-based displacement measurements, with online 

adaptation of Kalman filter noise covariances for improved 

state estimation under nonlinear and noisy conditions. 

Chattering-Reduced Robust Control: Design of a fuzzy 

sliding mode control strategy that dynamically regulates the 

switching surface boundary, reducing chattering effects 

without compromising robustness. 

Practical Implementation: Realization and experimental 

validation of the proposed approach on a power screw-driven 
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seismic simulator, demonstrating superior tracking accuracy, 

disturbance rejection, and robustness compared to 

conventional control techniques. 

The remainder of the paper is organized as follows: 

Section 2 describes the system modeling and problem 

formulation. Section 3 presents the sensor fusion design 

using adaptive Kalman filters. Section 4 details the proposed 

fuzzy sliding mode controller. Section 5 discusses 

experimental validation and performance analysis. Finally, 

Section 6 concludes the paper and outlines directions for 

future research. 

II. Dynamic Model of the System  

To derive the system dynamics and facilitate the 

subsequent control design, the following assumptions are 

adopted. Sensor noise and drift are bounded and mitigated 

using adaptive Kalman filtering. Actuator dynamics are 

considered sufficiently fast relative to the system dynamics, 

allowing actuator lag to be neglected. External disturbances 

and modeling uncertainties are assumed to be bounded and 

modeled as additive terms. The shake table operates within 

its linear elastic range, and the initial system states are 

assumed to be measurable or reasonably estimable through 

multi-sensor fusion. These assumptions are standard and 

ensure the robustness and practical applicability of the 

proposed method.  The d and q coordinate systems serve as 

mathematical converters for analysing and modelling three-

phase circuits[27]. 

3
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where 
d
i  and qi  are the currents on the d and q axes, 

espectively. Similarly, for the inductances on these axes, we 

use the symbols 
d

L  and qL . The voltages on the d and q 

axes, we denote them as 
d

v  and qv  respectively. The 

symbol   represents the angular velocity of the rotor.   

Signifies the flux amplitude. Furthermore, we introduce two 

more variables: p  denotes the number of pole pairs, while 

eT  represents the electromagnetic torque. The dynamic 

equations that describe the motion of a motor shaft can be 

stated as follows: 

1

e l

d T T
dt J
  

 
 
 

= − −  (2) 

d

dt


=    (3) 

where    denotes the viscous damping coefficient 

associated with the motor bearings,  is the angular 

displacement of the shaft, and 
l

T  signifies the load torque 

acting on the motor shaft[3]. Then, the mechanism of the ball 

screw is also represented in the following manner. 

FL
T


=  

 

(4) 

where T is the torque generated by the motor, F is linear 

force,    is ball-screw efficiency, and L stands for the lead 

of the ball screw. For a normal screw wing, the efficiency is 

approximately 90% [27]. Equation (5) establishes a 

relationship between the driving force and the rotational 

acceleration of the ball-screw. By substituting Equation (6) 

into Equation (2), the fundamental dynamic equation 

governing the motion of the electric motor shaft can be 

reformulated, resulting in Equation (7). 

F ML=     (5) 

2

l

ML
T




=     (6) 

2

e

d ML
j T

dt

 



= − −  (7) 

The term   denotes the rotational acceleration of the 

motor shaft. Additionally, M signifies the combined mass of 

the stage. This relationship is expressed in (8),  

1
M m m= +   (8) 

By rearranging equations (7) and (8): 

2

e

ML d
j T

dt






 
+ = − 

 
  (9) 

( )
1

e

d
T

dt J


= −  (10) 

2mL
J j


= +  (11) 

FSMC for trajectory tracking of shake table with adaptive 

filtering 

Figure 1 shows the schematic diagram of the 

PMSM/Shake Table system. Data fusion is essential for 

accurately estimating the system's displacement, velocity, 

and acceleration by integrating measurements from a MEMS 

accelerometer, encoder, and camera. Image processing 

provides advantages over traditional encoders and cameras 

in displacement measurement for shaking tables, such as 

non-contact operation, high spatial resolution, adaptability, 

robustness, and the ability to capture contextual information. 
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    Accelerometers perform well at higher frequencies but 

lose accuracy at lower frequencies due to sensitivity to low-

frequency noise and reduced signal resolution. These low-

frequency errors can significantly impact the stability of 

closed-loop systems, as they are amplified when 

differentiated to calculate velocity and displacement. This 

leads to challenges in tracking low-frequency seismic 

components, causing potential instability or performance 

degradation. 

      To address these issues, adaptive filtering and multi-

sensor fusion with systems like encoders and cameras are 

crucial for improving control system reliability and stability. 

The data fusion process in AEKF and AUKF follows a 

recursive procedure. Initially, sensor data—displacement 

from the encoder, acceleration from the accelerometer, and 

visual data from the camera—are inputs. In the prediction 

step, AEKF and AUKF algorithms forecast the next system 

state using a dynamic model. The update step incorporates 

actual sensor measurements to refine the predicted states. 

     In AEKF, the correction is based on a linearized model 

using Jacobian matrices to approximate the system’s 

nonlinear dynamics. Conversely, AUKF uses the unscented 

transformation to directly propagate the mean and 

covariance through nonlinear functions, avoiding 

linearization. This enables AUKF to better handle 

nonlinearities in sensor data. Both AEKF and AUKF 

adaptively update noise covariance matrices, a critical 

feature given the variability in measurement noise caused by 

environmental conditions or sensor performance. A 

recursive adaptation rule adjusts the noise covariance 

matrices dynamically, ensuring filter robustness and 

enhancing state estimation accuracy over time. 
 

A.  Fuzzy-Sliding-Mode Supervisory Controller 

Developing an effective controller to accurately follow the 

desired acceleration trajectory of a shake table involves 

numerous challenges, mainly due to system nonlinearities 

and environmental uncertainties. The presence of friction, 

actuator saturation, and nonlinear electrical or hydraulic 

dynamics complicates modeling and control design. 

Remark 1 :Nonlinearities such as actuator saturation and 

friction introduce unpredictable behavior that cannot be fully 

captured by linear models, necessitating adaptive and robust 

control approaches like FSMC. 

Moreover, acceleration, being the second derivative of 

displacement, amplifies any noise or error present in 

displacement or velocity measurements. Low-frequency 

noise and sensor limitations further degrade feedback 

quality, making precise trajectory tracking difficult. External 

disturbances such as temperature variations and varying 

payloads also affect system dynamics. 

Remark 2.  Errors in displacement or velocity are 

magnified in acceleration, particularly at low frequencies—

making noise rejection and real-time adaptability essential 

for accurate tracking. 

To overcome these challenges, this study integratesFSMC 

with AUKF. The combined scheme aims to achieve robust 

tracking of earthquake-like signals under two key 

uncertainties: 

Model uncertainties, arising from unaccounted system 

dynamics. 

Payload inconsistencies, caused by the installation of 

various structures on the shake table during experiments. 

The shake table control system consists of two loops. The 

first loop uses a proportional-integral (PI) controller to track 

the control input. The second loop is a supervisory controller 

that monitors the overall system performance. Since the 

motor controller operates with a PI configuration, the 

supervisory FSMC ensures robust system behavior. By 

integrating AEKF/AUKF techniques into closed-loop 

velocity control, the system achieves precise control over 

velocity and acceleration. 

The FSMC is specifically designed to regulate the shake 

table's velocity, with the sliding surface defined as detailed 

in [29]. This approach effectively handles dynamic system 

behavior and ensures accurate trajectory tracking, even 

under varying experimental conditions. The sliding surface s 

is selected based on the system's states, as defined below: 

( )
1n

d
s x,t x

dt

−

 
= + 
 

 (12) 

Here, x  is the tracking error between the reference 

trajectory and the actual state of the system, the parameter n 

represents the order of the governing dynamic equations,   

denotes a constant that is strictly positive.The choice of the 

sliding surface (S) is determined by the system states, with 

( )s x,t x=  [30]. Employing equation (1), the time 

derivative for s  is as: 

( ) ( )
1

dese l
s t T T

J
= −− −   (13) 

The desired acceleration signal, denoted as 
des

 , is 

bounded, meaning there exists a positive constant L such 

that:
 

  ,  t 0
des

( t ) L    .The control input is also 

defined as (14) where 
eq

u  is the equivalent control and is 

obtained from (15). 

Fig.1 . Communication diagram of components and supervisor 

controller 
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eq reach
u u u= −   (14) 

To obtain the equivalent control law necessary for the 

electric torque here, we derive the following relationship by 

setting equation (13) equal to zero. 

eq desl

ˆ ˆu T J= + +   (15) 

where ̂ , and Ĵ  are estimated values of β, and J 

parameters, respectively.  To ensure the stability of the 

sliding surface using the Lyapunov stability theory, we 

initially consider the selected Lyapunov function as follows: 

( ) 21

2
V s S=  (16) 

which is a positive definite function.  

( ) 21
0

2

d
V s S S ,

dt
=  −    (17) 

where   is a positive non-Fer constant, when inequality 

(17) is achieved, it indicates that the system is both stable 

and well-regulated. 
reach

u  is also calculated as (18) satisfying 

the sliding condition. 

( )reach
u ksgn S=  (18) 

To achieve the intended sliding behaviour, it is necessary 

to select the controller output is as: 

( )desl

ˆ ˆu T J ksgn S= + +  −  (19) 

To reduce the chattering caused by control command, we 

propose the implementation of a boundary layer with a 

thickness  . Consequently, Equation (19) is reformulated  as 

follows: 

desl

sˆ ˆu T J ksat
 

= + +  −  
 

 (20) 

The sgn(⋅) function represents the standard sign function, 

while the sat(⋅) function refers to the standard saturation 

function, which limits the output within the range [−1,1]. 

discontinuous switching of the control input as the system 

state approaches the sliding surface. This high-frequency 

oscillation can lead to actuator wear, system instability, and 

degraded control performance. In precision applications like 

shake tables, where accurate tracking of displacement, 

velocity, and acceleration is critical, chattering can 

significantly reduce control accuracy and system lifespan. 

To address this problem, a fuzzy inference mechanism 

was incorporated into the sliding mode control design, 

resulting in FSMC. FSMC mitigates chattering by 

dynamically adjusting the boundary layer thickness through 

fuzzy logic. In traditional SMC, discontinuous control 

actions produce high-frequency oscillations that adversely 

affect performance. In contrast, the fuzzy system adaptively 

fine-tunes the boundary layer thickness based on real-time 

system states, such as velocity and acceleration errors. 

 

TABLE 1  FUZZY RULES RELATED TO FUZZY SLIDING 

MODE CONTROLLER WITH SPEED AND 

ACCELERATION ERRORS 

Acceleration Error 
 

pb pe Ze nm nb 

ze nm Nm nb nb nb 

V
el

o
ci

ty
  

E
rr

o
r 

pm ze Nm nm nb nm 

pm pm Ze nm nm ze 

pb pm Pm ze nm pm 

pb pb Pm pm ze pb 

    

This adaptive adjustment ensures a smoother transition 

between control states, minimizing abrupt changes in the 

control signal. Fuzzy rules dynamically modify the 

saturation function within the control law, preserving robust 

performance while effectively reducing chattering. 

Consequently, FSMC enhances both control precision and 

system stability, even under varying conditions and external 

disturbances, as validated through experimental results. 

TABLE 2  THE VALUES OF THE DESIGNED 

CONTROLLER 

Value Parameter 

18 
min
 

22 
max
 

19.9 
̂ 

0.000577
2kgm   min

J 

0.001421
2kgm  max

J 

.00090596
2kgm  Ĵ 

0.88 k 

0.01  

Table 1 presents the fuzzy controller's rule base, where 

each input variable is divided into five membership 

functions: negative big (nb), negative medium (nm), zero 

(ze), positive medium (pm), and positive big (pb). A 

schematic diagram of the proposed supervisory controller 

based on the fuzzy sliding mode methodology is shown in 

Fig.1.To ensure the reproducibility of our results, detailed 

information regarding the tuning of FSMC  is provided. The 

membership functions were designed as triangular shapes 

with 50% overlap, and the fuzzy rule base was determined 

through expert knowledge and iterative optimization based 

on minimizing the root mean square error (RMSE) of the 

control output. The sliding surface parameters λ and η were 

initially selected based on system dynamics and then fine-

tuned through grid search within predefined stability 

margins. The gains of the equivalent control law and 

switching control components were adjusted using trial-and-

error guided by Lyapunov stability criteria. Table 2 

summarizes all final parameter values used in the 
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experiments, providing a complete reference for replicating 

the controller design and validation process. Design of 

adaptive filters (AEKF and AUKF) 

The integration of the MEMS accelerometer, encoder, and 

camera sensor is performed through a data fusion process, 

where each sensor contributes complementary information 

to estimate the shake table’s displacement, velocity, and 

acceleration. To optimally combine these measurements, 

Extended Kalman Filter (EKF) and Unscented Kalman Filter 

(UKF) techniques are employed. 

The Kalman filter is a recursive algorithm that estimates 

the state of a dynamic system by processing noisy 

measurements in real-time, without the need to store 

previous data. It achieves this by fusing model-based 

predictions with actual observations [31]. However, due to 

the high nonlinearity of the system analyzed in this study, the 

conventional Kalman filter is inadequate. Therefore, the 

EKF and UKF are adopted to address the nonlinearities. The 

UKF, leveraging the unscented transformation, directly 

propagates the mean and covariance through nonlinear 

dynamics, offering a more accurate state estimation 

compared to linearization-based approaches. Although 

slightly more computationally demanding than the EKF, the 

UKF's enhanced capability in handling nonlinear systems 

makes it particularly suitable for high-precision applications 

such as seismic tracking in shake tables. 

Remark 3: Compared to the linearization-based EKF, the 

UKF improves estimation accuracy in highly nonlinear 

systems by eliminating the need for Jacobians and instead 

applying the unscented transformation on sigma points. 

    Adaptive filtering techniques dynamically adjust the 

process and measurement noise covariance matrices, Q and 

R, which are critical to filter performance. This study focuses 

on the adaptive estimation of these covariances. Two primary 

objectives are pursued: (1) implementing AEKF and AUKF 

algorithms to accurately estimate the table’s state variables, 

and (2) analyzing and comparing the performance of AEKF 

and AUKF to highlight their respective strengths and 

limitations. 

Since the shake table dynamics are modeled in continuous 

time, while the adaptive filters are formulated in discrete 

time, the fourth-order Runge-Kutta method is employed to 

discretize the system. This method numerically 

approximates the solutions of the ordinary differential 

equations governing the shake table, enabling the application 

of the discrete-time filtering algorithms. 

EncoderEncoder

camerak camera

AccelerationAcceleration

y r

y y r

y r

 +
 

= + 
 

+  

 (21) 

where ( ), ,
Encoder camera Accelerationr r r  are measurement 

noises. The measurement and process noise covariance terms 

are uncorrelated, possessing white noise characteristics and 

following a Gaussian distribution with a mean of zero. These 

noise terms have known covariance matrices R and Q, 

respectively.   

    How to measure displacement using image processing 

technique is explained. The purpose of image processing in 

this research is to measure the displacement response of the 

moving plate of the shaking table. For this purpose, a screen 

with a white background, in the middle of which a 

rectangular sign in black colour with specific dimensions is 

installed on the table as the desired target for tracking. A 30-

frame camera is also placed at a certain distance from the 

target screen. The image matrix is formed by the following 

relation: 

( , ) ( , )I x y I x u y v= + +  (22) 

where I is the image matrix, u and v are the pixel 

displacement descriptors. The image processing algorithm 

looks for pixels in each column that have values lower than 

the threshold value. The threshold value is the value that 

separates the black rectangle from the image background. 

Any column in which the number of pixels with a value less 

than the threshold is close to the number of pixels of the 

width of the black rectangle is averaged from the spatial 

coordinates of those pixels, and vertical calculations end in 

that column. The number obtained from this average is the 

coordinate of the center of the black mark in the vertical 

direction. The same method is used to obtain the horizontal 

center of the mark. Hence, by procuring the precise 

coordinates of the mark's center within each frame, one can 

ascertain the displacement of the table. Equation (23) shows 

this process.  

[ ( , ) ][0, ]

1[ ( , ) ][0, ]

i I i yn Ti R
y

I i yn Ti R


=


 (23) 

Where y is the coordinate of the center of the target in the 

vertical direction. R is the number of pixels in a column and 

T is the threshold value and yn  is the columns to be 

processed and is obtained from equation (24). The center of 

the target in the horizontal direction is obtained in the same 

way. 

1

n

j

c j
yn

n=


=  (24) 

Here, according to the dimensions of the image and the 

black rectangle, the image is divided into 8 parts. In equation 

(24), n is equal to 8. C is the number of pixels in a row or the 

same number of columns. By having the coordinates of the 

center of the mark in each frame of the image, the 

displacement of the table is obtained in terms of the number 

of pixels, but the goal is to calculate the displacement of the 

meter in millimeters. Therefore, the dimensions of each pixel 

should be obtained in millimeters. For this, first, according 

to the dimensions of the black mark and the number of pixels 

it occupies in the image, the dimensions of each pixel can be 
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obtained in millimeters.  A simple camera is used in this 

research. In summary, the discrete nonlinear system  is as: 

( )

( )

1 1 1k k k k

k k k

x f x u w

y h x v

− − −
= + +

= +

 (25) 

 Is the process noise, the function f represents a dynamic 

model, which may be nonlinear. Similarly, the function h 

represents a measurement model, which may also be 

nonlinear[31]. Furthermore, the covariance  of process noise 
T

k k k
Q E w w=    is as: 

1 2 3 4 5 ,  0n

k k k k k kk
Q diag q q q q q q 

  =   (26) 

Ultimately, the ( )0
k k

v N ,R  represents a measurement 

noise characterized by a Gaussian distribution with a mean 

of zero. This noise is referred to as white noise due to its 

constant power across all frequencies. The covariance of this 

noise, denoted by T

k k k
R E v v=    , can be represented in the 

following mathematical expression. 

1 2 3     0,     1,2,3m

k k k kk
R diag r r r r m 

 =  =   (27) 

3-2-1-Estimation of Table Parameters using EKF 

The Extended Kalman filter algorithm has two steps of 

prediction and updating as below [32]. 

• Prediction  

| 1 1 1
ˆ ˆ

k k k k k
x F x u

− − −
= +   (28) 

| 1 1 1

T

k k k k k k
P F P F Q

− − −
= +   (29) 

• Update 

| 1 | 1

T

k k k k k k k
S H P H R

− −
= +   (30) 

( )
1

| 1| 1 k kk k k k k
K F P H S

−

−−
=   (31) 

( )| 1| 1
ˆˆ

k kk k
xZ h −−

=   (32) 

( )| 1| 1
ˆ ˆ ˆ

k k kk k k k
x x K y y −−

= + −   (33) 

( )
1 | 1k kk k k

P I K H P
− −
= −   (34) 

1ˆkk
x x

f
F

x −=


=


  (35) 

1ˆkk
xx

h
H

x −=


=


  (36) 

Estimation of Table Parameters using UKF 

The EKF is widely utilized for estimating the states of 

nonlinear continuous-time systems by combining model-

based predictions with real-time measurements. However, 

EKF requires linearization of the nonlinear system dynamics 

around the current estimated state at each time step. In 

complex systems such as the PMSM, this linearization 

process must be repeated continuously and can result in 

substantial computational complexity. Furthermore, the 

resulting linearized equations may become increasingly 

intricate, thereby adding to the processing burden. 

   In contrast, the UKF serves as a highly effective 

alternative to the EKF. Rather than linearizing the 

differential equations, the UKF utilizes the unscented 

transformation (UT) to directly propagate the mean and 

covariance of the state distribution through the nonlinear 

functions [33]. The UT provides a more accurate 

representation of the nonlinear transformations by capturing 

higher-order moments, which leads to improved estimation 

performance, especially in systems characterized by 

significant nonlinearities and model uncertainties. 

    This advantage is clearly reflected in the shake table 

experiments conducted in this study, where the UKF 

demonstrated superior accuracy and robustness compared to 

the EKF. The estimation process using UKF is described as 

follows: 

• Initialization: 

( )
( )

0 0

0 0 0 0 0

0

2

0

2

1, ..., 2

ˆ ( )
ˆ ˆ(( )( ) )

( )

1
 ,  

2

m

c

m c

i i

T

i L

x E x

P E x x x x

W
L

W n
L

W W
L

L L






 




  

=

=

= − −

=
+

= + − +
+

= =
+

= + −
 

 

(37) 

where   represents a scaling parameter, which is 

determined by the constant parameters 0 1   and   

[34]. L  denotes the dimensions of the state vector. 

Additionally,   is a non-negative parameter . When dealing 

with a Gaussian prior, the optimal value for   is considered 

to be 2 [34].  

• Sigma Points Calculation and Time Update: 

A set of weighted sigma points 1k
x

−  is generated by 

1

1 1 1 1 1

1,...,

ˆ ˆ ˆ( ) ( )

k

k k k i k k i

i n

x

x x L P x L P 

−

− − − − −

=

 
 

=

+ + − +   (38) 

Cholesky decomposition is used to calculate
1k

P
−

, and 

the subscript i represents the column of the matrix. 

, | 1 , 1
2

| 1 , | 1
0

2

| 1 , | 1 | 1 , | 1 | 1
0

, | 1 , | 1
2

| 1 , | 1
0

( )( )

( )

ˆ

ˆ ˆ

( )

ˆ

i k k i k
L

m

k k i i k k
i

L
c

k k i i k k k k i k k k k k
i

i k k i k k
L

m

k k i i k k
i

T

x f x

x W x

P W x x x x Q

y h x

y W y

− −

− −
=

− − − − −
=

− −

− −
=

+

=

= 

= − −

=

= 

 (39) 

• Measurement Update: 
2

ˆˆ

, | 1 | 1 , | 1 | 1
0

2
ˆˆ

, | 1 | 1 , | 1 | 1
0
ˆˆ ˆ ˆ

| 1 | 1

ˆˆ

| 1

ˆ ˆ[ ][ ]

ˆ ˆ[ ][ ]

ˆ ˆ ˆ

L
yy m T

k i i k k k k i k k k k k
i

L
xy c T

k i i k k k k i k k k k
i

xy yy

k k k

k k k k k k k

yy T

k k k k k k

P W y y y y R

P W x x y y

K P P

x x K y y

P P K P K

− − − −
=

− − − −
=

− −

−

= − − +

= − −

=

 = + − 
= −

 
 (40) 



7                                                                                   Running Title/First Author, et al 

 
During the forecasting stage, the model information serves 

as a vital factor, whereas the measurement data is 

incorporated into the estimates in the data assimilation stage. 

Innovative Adaptive Algorithm Utilizing the Steepest 

Descent Method 

In adaptive filtering algorithms, the process and 

measurement noise covariance matrices, denoted as Q 

and R respectively, serve as critical parameters that 

directly influence the performance and robustness of the 

estimator [35], [36]. In traditional Kalman filtering 

frameworks, these matrices are typically assumed to be 

known a priori and remain fixed throughout the 

estimation process. However, in many real-world 

applications, particularly in dynamic and uncertain 

environments, the statistical properties of noise may 

evolve over time due to changing operational conditions, 

sensor degradation, or environmental disturbances. As a 

consequence, maintaining static covariance assumptions 

can severely impair filter performance, leading to biased 

estimates and loss of optimality.  To overcome these 

limitations, this study introduces a recursive covariance 

adaptation mechanism based on the steepest descent 

method. The steepest descent technique is a classical yet 

powerful optimization approach widely employed in 

adaptive filtering, offering an efficient means of 

iteratively minimizing cost functions associated with 

estimation errors. By leveraging the steepest descent 

principle, the proposed adaptation algorithm updates Q 

and R in real time, thereby enabling the filter to remain 

responsive to nonstationary noise characteristics. 

       The core idea behind the proposed adaptation 

strategy is to minimize the discrepancy between the 

empirical innovation covariance, derived from actual 

measurement residuals, and the theoretical innovation 

covariance predicted by the Kalman filter. Specifically, a 

cost function is formulated based on the norm of the 

difference between these two covariance matrices. The 

steepest descent method is then applied to adjust Q and R 

iteratively in the direction that reduces this cost, thereby 

ensuring that the filter maintains consistency and 

optimality even under time-varying noise conditions. 

This dynamic adjustment mechanism not only enhances 

the adaptability of the Kalman filter but also improves its 

robustness against modeling inaccuracies and external 

perturbations, making it particularly suitable for practical 

applications where noise environments are unpredictable 

and rapidly changing. In order to accomplish this 

objective, the initial step involves defining the disparity 

between the measurements in the following manner: 

| 1
ˆ

k k k k
e y y

−
= −  (41) 

Here,
k

Z and 
| 1

ˆ
k k

Z
−

are the real measurement and its 

estimated value, respectively. The remaining actual 

covariance of the above relationship is estimated by 

averaging this sequence according to the following 

relationship. 

1

1

ˆ
ek

k T
e ej jM j k M

C =
= − +

 (42) 

The size of the estimation window is denoted by M. 

Deterministic and stochastic methods are employed to select 

the optimal size of the moving window. In the realm of 

deterministic techniques, an optimization problem is 

typically characterized by the deliberate selection of a 

suitable objective function, while taking into account the 

constraints imposed by limited memory[37]. Now, having 

the actual covariance Ĉ
ek  and the theoretical covariance 

| 1k k
S

−
of the system, the cost function is defined as follows 

[38]: 

( ) ( )
| 1 | 1

1 ˆ ˆ

2

T

k k k k kek ekJ tr S C S C
− −




= − − 


  (43) 

The objective of employing sequence-based strategies for 

innovation is to minimize | 1
ˆ

k k ek
CS − − by altering  R and Q. 

Hence, to minimize the cost function, it is crucial to ensure 

that the actual and theoretical covariance are identical. If 

there is a difference between the process and measurement 

noise covariance's from their actual values, it leads to a 

difference between these two covariance. The adaptive 

algorithm for process and measurement noise covariances is 

as follows: 

, 1 ,

1, 2,3, 4,5
n n nn

q k k q k
k

nq q 
−

== +  (44) 

, 1 , 1
1

1, 2,3
m m mm

r k k r k
k

mr r 
+ +

+

== +  (45) 

Where 
n

k
q  and 

1

m

k
r

+
, representing the 

kQ  and 
kR  

matrices respectively. The primary objective is to refine the 

values of 
, 1

m

r k


+
, 

, 1

m

r k


+
, 

,

n

q k
  and 

,

n

q k
 using the steepest 

descent technique. This technique aims to minimize the 

value of 
k

J  as much as possible.   

, 1 , ,
, ,

m
m m R m Rk k k

m m mr k r k k r k k
r k k r k

J J r
r

    
 +

  
= − = −

  
 (46) 

, 1 , ,
, ,

m
m m R m Rk k k

m m mr k r k k r k k
r k k r k

J J r
r

    
 +

  
= − = −

  
 

 

(47) 

1

, , 1 , 1
, 1 1 , 1

m
n n Q n R kk k

n m nq k q k k q k k
q k k q k

qJ J
q

    
 

−

− −
− − −

 
= − = −

  
 

 

(48) 

1

, , 1 , 1
, 1 1 , 1

n
n n Q n Q kk k

n n nq k q k k q k k
q k k q k

qJ J
q q q

     −

− −
− − −

 
= − = −

  
 

 

(49) 
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The training parameters 
R

k
  and 

Q

k
  are selected based 

on empirical evidence. For relations (46), (47), (48) and (49), 

the following equalities hold:  

( ), 1 ,1
,

.sgn
m

mk m m m

m r k k r kk
r k

r
r r 

 −−


= +


 (50) 

( ), 1 ,

,

sgn
m

k m m m

m r k k r k

r k

r
r 

 −


= +


 (51) 

( )1

, 1 2 , 12
, 1

.sgn
m

nk n n n

n q k k q kk
q k

q
q q 


−

− − −−
−


= +


 (52) 

( )1

, 1 2 , 1
, 1

sgn
n

n n nk
n q k k q k
q k

q
q

q
 −

− − −
−


= +


 (53) 

The provided equations employ the notation sgn  to 

represent the sign function. Furthermore, to calculate k

m

k

J

r




 

and 
1

k

m

k

J

q −




, the following relationship is used. 

2
| 1

| 1

| 1

ˆ( )1
2

ˆ
ˆ( )( )

k k ekk
m m

k k

k k ek
k k ekm m

k k

S CJ
tr

r r

S C
tr S C

r r

−

−

−

 
 
 
 

 
 
 
 

 −
= =

 

 
− −

 

 (54) 

By utilizing Equations (28) and (40), we can derive the 

following result. 

ˆ
0ek

m

k

C

r


=


  (55) 

| 1k k k

m m

k k

S R

r r

−
 

=
 

  (56) 

Where 
k

m

k

R

r





 is a square matrix with dimension m. 

Similarly, 
1

k

n

k

J

q −




 for 

1

n

k
q

−
 is expressed as 

2
| 1

1 1

| 1

| 1

1 1

ˆ( )1
2

ˆ
ˆ( )( )

k k ekk
n n
k k

k k ek
k k ekn n

k k

S CJ
tr

q q

S C
tr S C

q q

−

− −

−

−

− −

 
 
 
 

 
 
 
 

 −
= =

 

 
− −

 

 
 

(57) 

1

ˆ
0ek

n

k

C

q
−


=


 (58) 

| 1

1 1

k k Tk

k kn n

k k

S Q
H H

q q

−

− −

 
=

 
 (59) 

Where 

1

k

n

k

Q

q
−





 is a square matrix with dimension n. Finally, 

we can express the laws for adapting coefficients as follows:  

( )

( )

, 1 , 1
, 1 ,

| 1

. .sgn

ˆ

m m R m m m m

r k r k k k
r k k r k

k

k k
ekm

k

r r

R
tr S C

r

    
+ −

−

−

= − +

  
   −
   
  

 (60) 

( )

( )

, 1 ,
, 1 ,

| 1

.sgn

ˆ

m m R m m m

r k r k k
r k k r k

k

k k
ekm

k

r

R
tr S C

r

    
+

−

−

= − +

  
   −
   
  

  (61) 

( )

( )

, , 1
, 1 2 , 12

1

| 1

1

. .sgn

ˆ

n n Q n n n n

q k q k k
q k k q kk

Tk

k k
ekn

k k

k

q q

Q
tr H H S C

q

    
−

− − −−

−

−

−

= − +

  
   −
   
  

  (62) 

( )

( )

, , 1
, 1 2 , 1

1

| 1

1

.sgn

ˆ

n n Q n n n

q k q k k
q k k q k

Tk

k k
ekn

k k

k

q

Q
tr H H S C

q

    
−

− − −

−

−

−

= − +

  
   −
   
  

  (63) 

TABLE 3  PARAMETERS OF THE BALL-SCREW-DRIVEN 

SERVOMECHANISM 

Units Value Parameter 

H 0.00525 dL 

H 0.00525 qL 

Ohm 0.9585 R 

_ 8 p 

Nm/rad/s 0.0003035 β 

v/rad/s 0.1827 λ 

_ %90 η 

Kgm2 0.00805512 j 

Mm 20 h 

Kg 16.75 m 

Kg 10 1m 

 

Figure 2 illustrates the block diagram of the proposed 

adaptive filter. As shown, measurements from three linear 

encoders, a camera, and an accelerometer are fed into the 

AEKF/AUKF to estimate all relevant system states.  The 

estimated linear velocity is processed by the feedback filter, 

which subtracts it from the reference input representing the 

desired earthquake ground motion. The resulting velocity 

error is then passed to the FSMC to generate appropriate 

control signals. The proposed method, combining FSMC 

with AEKF/AUKF for shake table control, significantly 

enhances the accuracy and robustness of seismic 

simulations. Its ability to handle system nonlinearities, 

sensor noise, and payload variations improves the reliability 

of shake table tests, thereby contributing to the development 

of safer and more resilient structures.  
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III. Results of Experimental Setup Testing 

To evaluate the proposed control strategy for regulating 

displacement, velocity, and acceleration, an experimental 

study was conducted at Arak University [26] using a uniaxial 

earthquake simulator, as shown in Fig. 2. The shake table is 

driven by a PMSM coupled to a ball-screw mechanism, 

capable of achieving a maximum velocity of 100 mm/s and 

an acceleration of 2g, suitable for replicating moderate 

seismic events. The control system includes a servo drive, a 

Windows-based host PC, an ATMega32 microcontroller, an 

Advantech PCI-1716 DAQ card, a SCXI-1000 signal 

conditioner, and analog input modules. A linear encoder with 

5 μm resolution measures the stage displacement, while a 

shaft encoder operating at 2500 pulses per revolution 

monitors the motor shaft angle. An ADXL203 analog 

accelerometer captures horizontal acceleration, and a camera 

operating at 30 fps provides additional displacement 

measurements. The sampling period for model discretization 

and controller implementation is set to 1 ms. Sensor data 

from the linear encoder are transmitted to the microcontroller 

for real-time processing. The parameters of the ball-screw-

driven servomechanism are summarized in Table 3. 

 

 The microcontroller calculates the position of the shake 

table and sends it to the DAQ card as a 16-bit word. The 

camera also sends data to the computer via the USB port. 

Acceleration data are also acquired by the DAQ card 

connected to the PC where the control program is 

implemented in MATLAB software. Furthermore, for safety 

reasons two infrared CNY70 limit switches are used to shut 

down the system in case the stage travel exceeds the 

predefined ±90-mm stroke range.  

 

(A) 

 
(B) 

 
(C) 

 

As calibration is a critical step in ensuring the accuracy 

and reliability of the measurement system. The linear 

encoder, MEMS accelerometer, and camera system is all 

calibrated prior to the experiments. The linear encoder was 

calibrated by comparing its displacement measurements to a 

high-precision micrometer. The MEMS accelerometer was 

calibrated using a vibration table with known acceleration 

profiles. For the camera system, calibration involved 

determining the pixel-to-millimeter conversion factor by 

measuring a target of known dimensions at various 

distances. This process was crucial for minimizing 

measurement errors and ensuring the data fusion algorithms 

provided accurate state estimates, enhancing the overall 

methodology. Environmental disturbances such as EMI, 

vibrations, temperature variations, and dust significantly 

affect the performance of measurement sensors within 

control systems. While these challenges cannot be entirely 

eliminated, the integration of noise filtering, sensor 

shielding, and multi-sensor fusion techniques effectively 

mitigates their impact. This study highlights the importance 

of designing resilient control systems to address these issues, 

ensuring reliable operation and high precision in dynamic 

testing environments.  The proposed control framework has 

been successfully implemented on the shake table using 

MATLAB. For evaluation, scaled versions of two significant 

seismic events—namely the Kobe and Chalfant 

earthquakes—were employed as reference inputs for 

displacement tracking and dynamic response analysis. 
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Fig.2.The uniaxial earthquake simulator at Arak University 

Fig.3. A Comparison between Reference Displacement (A), Velocity (B) 
and Acceleration (C) for Kobe Earthquake and Laboratory Test Results 

without structure installed on the shake table 
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(A) 

 
(B) 

 
(C) 

 

 Figures 3(A)–(C) present a comparative assessment of 

tracking performance for different controller configurations, 

particularly the supervisory control scheme that integrates 

AEKF/AUKF-based sensor fusion with FSMC. As shown in 

Figure 3(A), the control system incorporating AEKF fails to 

track the displacement trajectory with sufficient precision. In 

contrast, the control system based on AUKF in conjunction 

with FSMC achieves a significant reduction in displacement 

tracking error.  Similar performance enhancements are 

evident in velocity and acceleration tracking, as depicted in 

Figures 3(B) and 3(C), respectively. These outcomes 

highlight the superior estimation and control capabilities of 

the proposed AUKF-based FSMC framework, 

demonstrating its effectiveness in accurately reproducing 

complex earthquake motion profiles.   When executing the 

adaptive algorithm, the initial values for the parameters 1,r , 

1,r , 0,q , and 0,q  are established. These parameters 

should not be chosen too small, because of the effect of these 

parameters on R and Q. At the beginning of the process, R 

should not be smaller than its real value and Q should not be 

bigger than its real value. Based on the effect that R
k  and 

Q
k  have on R and Q respectively, R

k  is chosen around 0.1 

and Q
k  can be chosen larger or smaller than this value.  

 

 
(A) 

 
(B) 

 
(C) 

 

 Figures 4 (A)–(C) illustrate the trajectory tracking 

performance of the proposed control framework during the 

Chalfant earthquake scenario. The evaluation focuses on 

displacement, velocity, and acceleration responses over a 

representative short time window. Experimental results were 

obtained using real seismic data to assess the method’s 

effectiveness in capturing acceleration dynamics. The 

figures compare the system’s response under AUKF- and 

AEKF-based control strategies against the reference 

Chalfant earthquake records. In all three cases, the AUKF-

based approach consistently outperforms its AEKF 

counterpart, achieving more accurate tracking of the target 

trajectories. These comprehensive experimental findings 

reinforce the effectiveness of integrating AUKF with FSMC, 

4 6 8 10 12 14

-15

-10

-5

0

5

10

Time(s)

D
is

p
la

c
e
m

e
n
t 
(m

m
)

Chalfant (scale=0.5)

 

 

Reference Displacement

FSMC- AUKF

FSMC- AEKF

4 6 8 10 12 14

-6

-4

-2

0

2

4

6

8

Time(s)

V
e
lo

c
ity

(c
m

/s
)

Chalfant(scale=0.5)

 

 

Refrence Velocity

FSMC- AUKF

FSMC- AEKF

5 6 7 8 9 10 11 12 13 14

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time (s)

A
c
c
e
le

ra
ti
o
n
 (

g
)

Chalfant (scale=0.5)

 

 

Reference Acceleration

FSMC- AUKF

FSMC- AEKF

4 6 8 10 12 14 16 18 20
-0.15

-0.1

-0.05

0

0.05

0.1

Kobe(scale=0.5)

Time(s)

A
c
c
e
le

ra
ti
o
n
(g

)

 

 

Reference Acceleration

FSMC- AUKF

FSMC- AEKF

Fig .4.  A Comparison between Reference Displacement (A), Velocity 

(B) and Acceleration (C) for Chalfant Earthquake and Laboratory Test 

Results without structure installed on the shake table 

Fig.5. (A) Comparison between Reference Displacement, Velocity (B) 

and Acceleration (C) for Kobe Earthquake and Laboratory Test Results 

with structure installed on the shake table 
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confirming its superior capability in accurately tracking 

displacement, velocity, and acceleration under realistic 

earthquake conditions. 

According to the findings provided, the incorporation of 

the FSMC and the AUKF-based technique on the shake table 

yielded a notable decrease in errors related to the tracking of 

displacement, velocity, and acceleration. To evaluate the 

resilience of the proposed controller, supplementary shake 

table experiments were performed using a mounted structure 

weighing 11.9 kilograms. Figure 2 depicts the shake table 

along with the structure securely mounted on its surface. 

Tables 4 and 5 provide the root mean square error (RMSE) 

values. These results pertain to designs utilizing both AUKF 

and AEKF in conjunction with FSMC strategy, analyzed 

within the time domain.  The tracking errors presented as 

follows: 

   ( )

1
2 2

0

1 N
i iRMS ref

i

Err x x
N

 
 = −
 

=  

 
 

(64) 

The variable refx  is utilized to represent the signal of 

interest that is to be tracked, which may include parameters 

such as displacement, velocity, or acceleration. Additionally, 

we generate a simulated signal that corresponds to the 

reference signal. The variable N indicates the quantity of 

data points measured in each experiment.  

TABLE 4  RMSE WITHOUT STRUCTURE INSTALLED ON 

THE SHAKE TABLE FOR THE KOBE AND 

CHALFANT SAMPLE EARTHQUAKE 

Tracking Error Controller and 

Estimator 

Earthquake 

Acceleration Velocity Displacemen

t 

1.235 1.122 9.12 PID 

Kobe 

0.932 0.831 0.598 FSMC+EKF 

0.673 0.567 0.471 FSMC+UKF 

0.892 0.499 0.417 FSMC+AEKF 

0.434 0.311 0.294 FSMC+AUKF 

1.198 1.108 9.198 PID 

Chalfant 

0.787 0.606 0.489 FSMC+EKF 

0.690 0501 0.301 FSMC+UKF 

0.553 0.475 0.312 FSMC+AEKF 

0.484 0.399 0.0923 FSMC+AUKF 

Figures 5(A)–(C) display the system’s performance in 

tracking displacement, velocity, and acceleration under 

conditions involving parametric uncertainty. The 

combination of FSMC and the AUKF-based estimation 

approach exhibited a strong degree of robustness, 

successfully tracking the reference trajectories across all 

dynamic variables. 

 

TABLE 5  RMSE WITH THE STRUCTURE INSTALLED 

ON THE SHAKE TABLE FOR THE KOBE AND 

CHALFANT SAMPLE EARTHQUAKE 

Tracking Error 
Controller and 

Estimator 
Earthquake 

Acceleration 
Veloci

ty 
Displacement 

1.465 1.245 9.122 PID 

Kobe 1.003 0.912 0.632 FSMC+EKF 

0.765 0.611 0.512 FSMC+UKF 

0962 0.832 0.499 FSMC+AEKF 

0.603 0.457 0.386 FSMC+AUKF 

1.532 1.199 9.987 PID 

Chalfant 

0.991 0.901 0.622 FSMC+EKF 

0.821 0.609 0.403 FSMC+UKF 

0.9154 0.8013 0.5199 FSMC+AEKF 

0.7021 0.5142 0.296 FSMC+AUKF 

 

 
(A) 

 
 (B) 

 
(C) 

 In contrast, the AEKF-based control strategy failed to 

maintain acceptable tracking accuracy, particularly in the 

presence of model uncertainties. Further insights are 

provided in Figures 6(A)–(C), which compare the tracking 

performance of the supervisory controllers—specifically the 

integration of FSMC with either AEKF or AUKF—during 

the Chalfant earthquake scenario under uncertainty. The 

results clearly indicate that the FSMC+AUKF configuration 

achieves significantly lower errors across displacement, 

velocity, and acceleration trajectories. This underscores the 

advantage of the proposed adaptive filtering and control 

scheme in uncertain and nonlinear dynamic environments. 

The AUKF-based control consistently outperforms the 

AEKF-based control in trajectory tracking across all 

scenarios, as evidenced by the RMSE in the time domain. 

Extensive experimental results clearly demonstrate that 
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Fig.6. (A) Comparison between Reference Displacement, Velocity (B) 

and Acceleration (C) for Chalfant Earthquake and Laboratory Test 

Results with structure 
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combining the AUKF and FSMC techniques with reference 

velocity records yields superior control performance for 

tracking displacement, velocity, and acceleration 

trajectories. In summary, the integration of AEKF/AUKF 

with FSMC significantly enhances the controller's 

adaptability, accuracy, and overall controllability, offering a 

robust control strategy well-suited for earthquake simulator 

applications. Furthermore, the experimental findings 

highlight the AUKF’s notable superiority over the AEKF in 

trajectory tracking, achieving consistently lower RMSE 

values for displacement, velocity, and acceleration. 

Specifically, during the tracking of seismic profiles such as 

the Kobe and Chalfant earthquakes, the AUKF-based system 

demonstrated superior accuracy and stability, even under 

varying conditions and in the presence of parameter 

uncertainties.   

TABLE 6  COMPARISON OF CONTROL INPUT 

CHATTERING 

Control Method RMS Voltage(V) Relative Reduction 

Standard SMS 12.45 20% 

Proposed FSMC 4.08 67% 

To rigorously validate the proposed FSMC-AUKF 

framework, its performance was compared against PID and 

FSMC-EKF/UKF based controllers under identical 

experimental conditions. As shown in Table 4 and 5, the 

proposed method reduced displacement, velocity, and 

acceleration RMSE by 45–60% compared to PID and 32–

52% compared to FSMC-EKF/UKF. The adaptive noise 

covariance in AUKF outperformed conventional EKF/UKF 

by 18–28%, particularly under payload uncertainties. These 

results confirm that the synergy of fuzzy boundary layer 

adaptation and adaptive filtering uniquely addresses the 

limitations of existing methods in high-precision seismic 

tracking.  Also, to quantify the chattering suppression, the 

RMS values of the control input voltage were computed for 

both the standard SMC and FSMC during the high-frequency 

phase of the Kobe earthquake simulation (10–15 seconds). 

As demonstrated in Table 6, the FSMC reduces the RMS 

voltage from 12.45 V (SMC) to 4.08 V, achieving a 67% 

reduction in chattering. 

     Table 7 presents a comparative analysis of the 

computational cost associated with the implemented 

algorithms (PID, FSMC+EKF, FSMC+UKF, FSMC-AEKF, 

and FSMC-AUKF). All methods were executed on identical 

hardware specifications (Intel Core i7-9700K CPU, 16 GB 

RAM) to ensure a fair comparison. Among the evaluated 

approaches, FSMC-AUKF exhibits a higher computational 

burden compared to the conventional PID controller, 

primarily due to the incorporation of adaptive filtering 

mechanisms and fuzzy inference systems. Nonetheless, this 

increased computational demand is justified by the 

significantly enhanced tracking performance offered by the 

FSMC-AUKF method. 

 

TABLE 7  COMPARISONS OF COMPUTATIONAL COST 

Computational Cost Controller and Estimator 

0.12 PID 

0.15 FSMC+EKF 

0.17 FSMC+UKF 

0.165 FSMC+AEKF 

0.19 FSMC+AUKF 

 

IV. Conclusion 

This paper presented the development and application of 

a novel supervisory controller combining FSMC with AEKF 

and AUKF techniques for precise motion control of a 

laboratory-scale shake table. A structure was employed to 

mitigate chattering in the sliding mode control input, thereby 

improving the operational lifespan of the electric motors.  An 

adaptive recursive method for noise covariance estimation 

was proposed, offering low computational complexity while 

ensuring the non-negativity of covariance matrix elements. 

Optimal state estimation was achieved through sensor 

fusion, integrating encoder, accelerometer, and camera data 

using Kalman filtering techniques. This fusion effectively 

compensated for sensor faults, maintaining system 

performance even under partial sensor failure. The image 

processing approach also demonstrated strong performance 

at a low cost.  Through the proposed methodology, accurate 

estimation of the table velocity, previously unmeasurable, 

was accomplished using AEKF and AUKF. Two 

experimental setups were designed: one integrating FSMC 

with AUKF, and the other with AEKF. Results demonstrated 

that the proposed controller successfully suppressed 

excessive vibrations caused by the system’s inherent 

flexibility. Furthermore, AUKF consistently achieved higher 

estimation accuracy compared to AEKF, despite similar 

computational complexity. Experimental validation using 

the Chalfant and Kobe earthquake records confirmed the 

controller’s robustness in both stability and performance.  

While the experimental results are promising, several 

limitations must be acknowledged. The experiments were 

conducted on a laboratory-scale shake table with specific 

configurations. Broader validation across diverse payloads, 

actuator types, and environmental conditions is necessary for 

generalization. Moreover, challenges such as latency, 

hardware constraints, and unmodeled dynamics, typical in 

industrial applications, were not fully addressed.  Future 

work will focus on extending validation to large-scale shake 

tables, integrating deep learning-based adaptive control 

methods, and optimizing computational efficiency for real-

time embedded system implementation. These efforts aim to 

bridge the gap between laboratory research and industrial 

application. 
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