
تعداد نشریات | 33 |
تعداد شمارهها | 775 |
تعداد مقالات | 7,506 |
تعداد مشاهده مقاله | 12,573,389 |
تعداد دریافت فایل اصل مقاله | 8,511,490 |
Geometric clustering fuzzy regression based on c-means clustering | ||
Iranian Journal of Fuzzy Systems | ||
دوره 22، شماره 3، مرداد و شهریور 2025، صفحه 87-101 اصل مقاله (540.65 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2025.51386.9078 | ||
نویسنده | ||
Mohsen Arefi* | ||
University of Birjand | ||
چکیده | ||
In this paper, we present an approach to fit some clustering fuzzy linear regression models based on the fuzzy response variables and fuzzy parameters. In this approach, we first introduce a method for clustering crisp/fuzzy data based on fuzzy c-means clustering, and then, we fit some clustering fuzzy regression models based on the geometric mean. The optimal clustering fuzzy regression models are evaluated under two indices of goodness of fit. The applications of the proposed approach are studied in modeling some real data sets. | ||
کلیدواژهها | ||
C-means clustering؛ Fuzzy data؛ Fuzzy regression؛ Geometric mean؛ Goodness of fit | ||
مراجع | ||
[1] M. Gh. Akbari, G. Hesamian, Linear model with exact inputs and interval-valued fuzzy outputs, IEEE Transactions on Fuzzy Systems, 26 (2018), 518-530. https://doi.org/10.1109/TFUZZ.2017.2686356 [2] M. Arefi, Clustering regression based on interval-valued fuzzy outputs and interval-valued fuzzy parameters, Journal of Intelligent and Fuzzy Systems, 30 (2016), 1339-1351. https://doi.org/10.3233/IFS-152048 [3] M. Arefi, Quantile fuzzy regression based on fuzzy outputs and fuzzy parameters, Soft Computing, 24 (2020), 311-320. https://doi.org/10.1007/s00500-019-04424-2 [4] M. Arefi, A. H. Khammar, Nonlinear prediction of fuzzy regression model based on quantile loss function, Soft Computing, 28(6) (2024), 4861-4871. https://doi.org/10.1007/s00500-023-09190-w [5] M. Arefi, S. M. Taheri, Weighted similarity measure on interval-valued fuzzy sets and its application to pattern recognition, Iranian Journal of Fuzzy Systems, 11 (2014), 67-79. https://doi.org/10.22111/ijfs.2014.1723 [6] M. Arefi, S. M. Taheri, Least squares regression based on Atanassov’s intuitionistic fuzzy inputs-outputs and Atanassov’s intuitionistic fuzzy parameters, IEEE Transactions on Fuzzy Systems, 23 (2015), 1142-1154. https: //doi.org/10.1109/TFUZZ.2014.2346246 [7] M. Asadolahi, M. Gh. Akbari, G. Hesamian, M. Arefi, A robust support vector regression with exact predictors and fuzzy responses, International Journal of Approximate Reasoning, 132 (2021), 206-225. https://doi.org/10. 1016/j.ijar.2021.02.006 [8] E. Bas, E. Egrioglu, A fuzzy regression functions approach based on Gustafson-Kessel clustering algorithm, Information Sciences, 592 (2022), 206-214. https://doi.org/10.1016/j.ins.2022.01.057 [9] J. Chachi, A weighted least-squares fuzzy regression for crisp input-fuzzy output data, IEEE Transactions on Fuzzy Systems, 27 (2019), 739-748. https://doi.org/10.1109/TFUZZ.2018.2868554 [10] J. Chachi, A. Kazemifard, M. Jalalvand, A multi-attribute assessment of fuzzy regression models, Iranian Journal of Fuzzy Systems, 18 (2021), 131-148. https://doi.org/10.22111/ijfs.2021.6181 [11] J. Chachi, M. Roozbeh, A fuzzy robust regression approach applied to bedload transport data, Communications in Statistics - Simulation and Computation, 46 (2017), 1703-1714. https://doi.org/10.1080/03610918.2015. 1010002 [12] J. Chachi, S. M. Taheri, Multiple fuzzy regression model for fuzzy input-output data, Iranian Journal of Fuzzy Systems, 13 (2016), 63-78. https://doi.org/10.22111/ijfs.2016.2596 [13] L. H. Chen, S. H. Nien, A new approach to formulate fuzzy regression models, Applied Soft Computing, 86 (2020), Article No.: 105915. https://doi.org/10.1016/j.asoc.2019.105915 [14] F. Dotto, A. Farcomeni, L. A. Garcia-Escudero, A. Mayo-Iscar, A fuzzy approach to robust regression clustering, Advances in Data Analysis and Classification, 11 (2017), 691-710. https://doi.org/10.1007/s11634-016-0271-9 [15] D. E. Gustafson, W. C. Kessel, Fuzzy clustering with a fuzzy covariance matrix, Proceedings of the IEEE Conference on Decision and Control, San Diego, (1978), 761-766. https://doi.org/10.1109/CDC.1978.268028 [16] G. Hesamian, M. Gh. Akbari, Fuzzy quantile linear regression model adopted with a semi-parametric technique based on fuzzy predictors and fuzzy responses, Expert Systems With Applications, 118 (2019), 585-597. https: //doi.org/10.1016/j.eswa.2018.10.026 [17] G. Hesamian, M. Gh. Akbari, A fuzzy additive regression model with exact predictors and fuzzy responses, Applied Soft Computing, 95 (2020), Article No.: 106507. https://doi.org/10.1016/j.asoc.2020.106507 [18] E. Hosseinzadeh, H. Hassanpour, M. Arefi, A weighted goal programming approach to fuzzy linear regression with crisp inputs and type-2 fuzzy outputs, Soft Computing, 19 (2015), 1143-1151. https://doi.org/10.1007/ s00500-014-1328-3 [19] E. Hosseinzadeh, H. Hassanpour, M. Arefi, A weighted goal programming approach to estimate the linear regression model in full quasi type-2 fuzzy environment, Journal of Intelligent and Fuzzy Systems, 30 (2016), 1319-1330. https://doi.org/10.3233/IFS-152046 [20] H. Y. Jung, J. H. Yoon, S. H. Choi, Fuzzy linear regression using rank transform method, Fuzzy Sets and Systems, 274 (2015), 97-108. https://doi.org/10.1016/j.fss.2014.11.004 [21] M. Kelkinnama, S. M. Taheri, Fuzzy least-absolutes regression using shape preserving operations, Information Sciences, 214 (2012), 105-120. https://doi.org/10.1016/j.ins.2012.04.017 [22] A. H. Khammar, M. Arefi, M. Gh. Akbari, A robust least squares fuzzy regression model based on kernel function, Iranian Journal of Fuzzy Systems, 17(4) (2020), 105-119. https://doi.org/10.22111/ijfs.2020.5409 [23] A. H. Khammar, M. Arefi, M. Gh. Akbari, A general approach to fuzzy regression models based on different loss functions, Soft Computing, 25 (2021), 835-849. https://doi.org/10.1007/s00500-020-05441-2 [24] A. H. Khammar, M. Arefi, M. Gh. Akbari, Quantile fuzzy varying coefficient regression based on kernel function, Applied Soft Computing, 107 (2021), Article No.: 107313. https://doi.org/10.1016/j.asoc.2021.107313 [25] J. Mohammadi, S. M. Taheri, Pedomodels fitting with fuzzy least squares regression, Iranian Journal of Fuzzy Systems, 1 (2004), 45-61. https://doi.org/10.22111/ijfs.2004.505 [26] E. N. Nasibov, Fuzzy least squares regression model based of weighted distance between fuzzy numbers, Automatic Control and Computer Sciences, 41 (2007), 10-17. https://doi.org/10.3103/S0146411607010026 [27] S. M. Taheri, M. Kelkinnama, Fuzzy linear regression based on least absolute deviations, Iranian Journal of Fuzzy Systems, 9 (2012), 121-140. https://doi.org/10.22111/ijfs.2012.230 [28] R. N. Xu, C. L. Li, Multidimensional least-squares fitting with a fuzzy model, Fuzzy Sets and Systems, 119 (2001), 215-223. https://doi.org/10.1016/S0165-0114(98)00350-9 [29] M. S. Yang, C. H. Ko, On cluster-wise fuzzy regression analysis, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 27 (1997), 1-13. https://doi.org/10.1109/3477.552181 [30] M. S. Yang, T. S. Lin, Fuzzy least-squares linear regression analysis for fuzzy input-output data, Fuzzy Sets and Systems, 126 (2002), 389-399. https://doi.org/10.1016/S0165-0114(01)00066-5 [31] W. Zeng, Q. Feng, J. Lia, Fuzzy least absolute linear regression, Applied Soft Computing, 52 (2016), 1009-1019. https://doi.org/10.1016/j.asoc.2016.09.029 [32] H. J. Zimmermann, Fuzzy sets theory and its applications, Third Eds., Kluwer, Boston, 1996. hhttps://doi.org/ 10.1007/978-94-010-0646-0 | ||
آمار تعداد مشاهده مقاله: 37 تعداد دریافت فایل اصل مقاله: 57 |