
تعداد نشریات | 33 |
تعداد شمارهها | 776 |
تعداد مقالات | 7,517 |
تعداد مشاهده مقاله | 12,624,747 |
تعداد دریافت فایل اصل مقاله | 8,528,141 |
A Classification Using Mixture of Concordance Measures | ||
Iranian Journal of Fuzzy Systems | ||
دوره 22، شماره 3، مرداد و شهریور 2025، صفحه 139-149 اصل مقاله (1.81 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2025.51019.9017 | ||
نویسندگان | ||
Ayyub sheikhi* 1؛ RAdko Mesiar2 | ||
1Dept of Stat. Shahid Bahonar University (SUBK), Kerman, Iran | ||
2Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, STU Bratislava, Slovakia | ||
چکیده | ||
In the realm of classification studies, existing literature indicates that, when the relationships among exploratory variables extend beyond linear functions, nonlinear classifiers tend to outperform their linear counterparts. This study employs concordance measures to attain optimal outcomes in a classification task. In this regard, we examine the connection copula among the exploratory variables, as well as the copula linking the exploratory attributes to the target attribute are taken into consideration. As a major novelty, our classification approach utilizes a convex combination of the pairwise Spearman’s rank correlation coefficient $\rho$ and the pairwise Kendall’s association $\tau$. Through a simulation analysis, we assess the performance of our algorithm, which demonstrates its superiority over alternatives, including copula-based classification methods as well as machine learning classification models. We also, provide an application of our method to the classification of COVID-19 dataset for more illustration. | ||
کلیدواژهها | ||
Concordance measure؛ Copula؛ Classification؛ Correlation؛ Association measure | ||
مراجع | ||
[1] A. Adadi, A survey on data-efficient algorithms in big data era, Journal of Big Data, 8(1) (2021), 1-54. https://doi.org/ 10.1186/s40537-021-00419-9 [2] C. Chang, H. Hu, X. Zhao, S. Li, Q. Lin, Advancing cancer document classification with random forest, Academic Journal of Science and Technology, 8 (2023), 278-280. https://doi.org/10.54097/ajst.v8i1.14333
[3] Y. Chen, A copula-based supervised learning classification for continuous and discrete data, Journal of Data Science, 14(4) (2016), 769-782. https://doi.org/10.6339/JDS.201610_14(4).0010
[4] F. M. L. Di Lascio, Coclust: An r package for copula-based cluster analysis, Recent Applications in Data Clustering, 93 (2018). [5] A. Dolati, M. ´Ubeda-Flores, On measures of multivariate concordance, Journal of Probability and Statistical Science, 4(2) (2006), 147-163. https://doi.org/10.1007/s00357-018-9263-4
[6] H. Dong, X. Xu, H. Sui, F. Xu, J. Liu, Copula-based joint statistical model for polarimetric features and its application in polsar image classification, IEEE Transactions on Geoscience and Remote Sensing, 55(10) (2017), 5777-5789. https: //doi.org/10.1109/TGRS.2017.2702743 [7] M. Esfahani, M. Amini, G. R. Mohtashami-Borzadaran, A. Dolati, A new copula-based bivariate Gompertz–Makeham model and its application to COVID-19 mortality data, Iranian Journal of Fuzzy Systems, 20(3) (2023), 159-177. https://doi.org/10.22111/ijfs.2023.7645
[8] N. Hammami, M. Bedda, F. Nadir, Probabilistic classification based on copula for speech recognitation, an overview, In 2013 International Conference on Computer Applications Technology (ICCAT), (2013), 1-3. https://doi.org/10.1109/ICCAT. 2013.6700760 [9] F. Han, H. Liu, Semiparametric principal component analysis, In Advances in Neural Information Processing Systems, (2012), 171-179. https://proceedings.neurips.cc/paper/2012/file/4d67b0a97c1668247aa0b0b66f1c7b3d-Paper.pdf
[10] F. Han, H. Liu, High dimensional semiparametric scale-invariant principal component analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(10) (2014), 2016-2032. https://doi.org/10.1109/TPAMI.2014.2321374
[11] K. Jajuga, D. Papla, Copula functions in model based clustering, In From Data and Information Analysis to Knowledge Engineering, (2006), 606-613. https://doi.org/10.1007/3-540-33094-0_60 [12] W. Kruskal, Ordinal measures of association, Journal of the American Statistical Association, 53(284) (1958), 814-861. https://doi.org/10.1080/01621459.1958.10501481 [13] S. Lall, D. Sinha, A. Ghosh, D. Sengupta, S. Bandyopadhyay, Stable feature selection using copula-based mutual information, Pattern Recognition, 112 (2020), 107697. https://doi.org/10.1016/j.patcog.2020.107697
[14] E. Liebscher, Copula-based dependence measures, Dependence Modeling, 3(2) (2014). https://doi.org/10.1515/ dem-2014-0009 [15] D. Meriem, I. Amrani, T. Balenghien, A. Bennouna, M. Abik, A procedure to improve binary classification models and categorize features: The case of the distribution of three mosquito species in Morocco, Revue D’Intelligence Artificielle, 38(4) (2024). https://doi.org/10.18280/ria.380402 [16] R. Mesiar, A. Koles´arov´a, A. Sheikhi, Convex concordance measures, Fuzzy Sets and Systems, 441 (2022), 366-377. https: //doi.org/10.1016/j.fss.2022.03.012
[17] R. Mesiar, A. Koles´arov´a, A. Sheikhi, S. Shvydka, Convex weak concordance measures and their constructions, Fuzzy Sets and Systems, 478 (2024), 108841. https://doi.org/10.1016/j.fss.2024.108841
[18] R. Mesiar, A. Sheikhi, Nonlinear random forest classification, a copula-based approach, Applied Sciences, 11(15) (2021), 7140. https://doi.org/10.3390/app11157140
[19] R. B. Nelsen, An introduction to copulas, Springer Science and Business Media, 2006. https://doi.org/10.1007/ 0-387-28678-0 [20] O. Ozdemir, T. G. Allen, S. Choi, T. Wimalajeewa, P. K. Varshney, Copula-based classifier fusion under statistical dependence, IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(11) (2017), 2740-2748. https://doi.org/10. 1109/TPAMI.2017.2673146 [21] J. Rahmanishamsi, A. Dolati, M. R. Aghabozorgi, A copula-based ica algorithm and its application to time series clustering, Journal of Classification, 35(2) (2018), 230-249. https://doi.org/10.1007/s00357-018-9263-4
[22] C. Rung-Ching, W. E. Manongga, C. Dewi, Recursive feature elimination for improving learning points on hand-sign recognition, Future Internet, 14(12) (2022). https://doi.org/10.3390/fi14120584
[23] R. Salinas-Guti´errez, Q. Ang´elica Hern´andez, C. P. Abraham Montoya, H. C. Alberto L´opez, J. M. Marquez Romero, MLCOPULA: Classification models with copula functions, CRAN package, 2025. https://cran.r-project.org/package= MLCOPULA [24] R. Salinas-Guti´errez, A. Hern´andez-Aguirre, M. J. Rivera-Meraz, E. R. Villa-Diharce, Using gaussian copulas in supervised probabilistic classification, In Soft Computing for Intelligent Control and Mobile Robotics, (2010), 355-372. https://doi. org/10.1007/978-3-642-11809-4_28
[25] R. Salinas-Guti´errez, A. Hern´andez-Aguirre, E. Villa-Diharce, Copula selection for graphical models in continuous Estimation of Distribution Algorithms, Computational Statistics, 29 (2014), 685-713. https://doi.org/10.1007/s00180-014-0533-4
[26] M. Scarsini, On measures of concordance, Stochastica, 8 (1984), 201-218.
[27] A. Sklar, Fonctions de repartition en dimensions et leurs marges, Publications de l’Institut de statistique de l’Universit´e de Paris, 8 (1959), 229-231.
[28] W. Tse Li, J. Ma, N. Shende, G. Castaneda, J. Chakladar, J. C. Tsai, L. O. Honda, J. Xu, L. M. Wong, et al., Using machine learning of clinical data to diagnose covid-19: A systematic review and meta-analysis, BMC Medical Informatics and Decision Making, 20(1) (2020), 1-13. https://doi.org/10.1186/s12911-020-01134-5 [29] A. Voisin, V. A. Krylov, G. Moser, S. B. Serpico, J. Zerubia, Supervised classification of multisensor and multiresolution remote sensing images with a hierarchical copula-based approach, IEEE Transactions on Geoscience and Remote Sensing, 52(6) (2013), 3346-3358. https://doi.org/10.1109/TGRS.2013.2242691 [30] T. T. Wong, N. Y. Yang, G. H. Chen, Hybrid classification algorithms based on instance filtering, Information Sciences, 520(2020), 445-455. https://doi.org/10.1016/j.ins.2019.10.028
[31] H. Yue, Q. Meng, D. Chen, A nonlinear classification model-based method for voltage sag source location in distribution networks with distributed generation, Electric Power Systems Research, 236 (2024), 110970. https://doi.org/10.1016/j.epsr.2024.110970
[32] S. Zhigang, W. Guotao, L. Pengfei, W. Hui, Z. Min, L. Xiaowen, An improved random forest based on the classification accuracy and correlation measurement of decision trees, Expert Systems With Applications, 237 (2024), 121549. https: //doi.org/10.1016/j.eswa.2023.121549 | ||
آمار تعداد مشاهده مقاله: 32 تعداد دریافت فایل اصل مقاله: 37 |