تعداد نشریات | 25 |
تعداد شمارهها | 482 |
تعداد مقالات | 4,996 |
تعداد مشاهده مقاله | 7,315,560 |
تعداد دریافت فایل اصل مقاله | 4,926,149 |
Roughness in modules by using the notion of reference points | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 10، دوره 10، شماره 6، زمستان 2013، صفحه 109-124 اصل مقاله (360.4 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2013.1334 | ||
نویسندگان | ||
B. Davvaz ![]() | ||
Department of Mathematics, Yazd University, Yazd, Iran | ||
چکیده | ||
module over a ring is a general mathematical concept for many examples of mathematical objects that can be added to each other and multiplied by scalar numbers. In this paper, we consider a module over a ring as a universe and by using the notion of reference points, we provide local approximations for subsets of the universe. | ||
کلیدواژهها | ||
Rough set؛ Fuzzy set؛ Ring؛ Module؛ Submodule؛ Reference point | ||
مراجع | ||
bibitem{Ac} U. Acar, {it On $L$-fuzzy prime submodules}, Hacettepe Journal of Mathematics and Statistics, {bf 34} (2005), 17--25. bibitem{A} F. W. Anderson and K. R. Fuller, {it Rings and categories of modules}, Springer-Verlag, USA, 1992. bibitem{B} R. Biswas and S. Nanda, {it Rough groups and rough subgroups}, Bulletin of the Polish Academy of Science and Mathematics, {bf 42} (1994), 251--254. bibitem{Bo} G. L. Booth and N. J. Groenewald, {it Special radicals of near-ring modules}, Quaest. Math., {bf 15(2)} (1992), 127--137. bibitem{C} D. Ciucci, {it A unifying abstract approach for rough models}, In: RSKTO8 Proceedings, Lecture Notes in Artificial Intelligence, {bf 5009} (2008), 371--378. bibitem{D} B. Davvaz, {it Roughness in rings}, Information Sciences, {bf 164} (2004), 147--163. bibitem{D1} B. Davvaz, {it Roughness based on fuzzy ideals}, Information Sciences, {bf 176} (2006), 2417--2437. bibitem{BD} B. Davvaz, {it A short note on algebraic $T$-rough sets}, Information Sciences, {bf 178} (2008), 3247--3252. bibitem{BD1} B. Davvaz, {it Rough subpolygroups in a factor polygroup}, Journal of Intelligent and Fuzzy Systems, {bf 17(6)} (2006), 613--621. bibitem{D2} B. Davvaz and M. Mahdavipour, {it Roughness in modules}, Information Sciences, {bf 176} (2006), 3658--3674. bibitem{BD2} B. Davvaz and M. Mahdavipour, {it Rough approximations in a general approximation space and their fundamental properties}, Int. J. General Systems, {bf 37} (2008), 373--386. bibitem{Du}D. Dubois and H. Prade, {it Rough fuzzy sets and fuzzy rough sets}, Int. J. General Systems, {bf 17} (1990), 191--209. bibitem{d} A. Gaur, A. Kumar Maloo and A. Parkash, {it Prime submodules in multiplication modules}, International Journal of Algebra, {bf 1} (2007), 375--380. bibitem{KD} O. Kazanc{i} and B. Davvaz, {it On the structure of rough prime (primary) ideals and rough fuzzy prime (primary) ideals in commutative rings}, Information Sciences, {bf 178} (2008), 1343--1354. bibitem{KSD} O. Kazanc{i}, S. Yamak and B. Davvaz, {it The lower and upper approximations in a quotient hypermodule with respect to fuzzy sets}, Information Sciences, {bf 178} (2008), 2349--2359. bibitem{Ked} B. S. Kedukodi, S. P. Kuncham and S. E. Bhavanari, {it 3-prime and c-prime fuzzy ideals of nearrings}, Soft Comput., {bf 13(2)} (2009), 933--944. bibitem{r} B. S. Kedukodi, S. P. Kuncham and S. Bhavanari, {it Reference points and roughness}, Information Sciences, {bf 180} (2010), 3348--3361. bibitem{e} D. Keskin, {it A study on prime submodules}, Banyan Mathematical Journal, {bf 3} (1996), 27--32. bibitem{K} N. Kuroki, {it Rough ideals in semigroups}, Information Sciences, {bf 100} (1997), 139--163. bibitem{K1} N. Kuroki and P. P. Wang, {it The lower and upper approximations in a fuzzy group}, Information Sciences, {bf 90} (1996), 203--220. bibitem{L} V. Leoreanu-Fotea and B. Davvaz, {it Roughness in n-ary hypergroups}, Information Sciences, {bf 178} (2008), 4114--4124. bibitem{N} C. V. Negoita and D. A. Ralescu, {it Applications of fuzzy sets and systems analysis}, Birkhauser, Basel, 1975. bibitem{P3} Z. Pawlak and A. Skowron, {it Rough sets: some extensions}, Information Sciences, {bf 177} (2007), 28--40. bibitem{P4} Z. Pawlak and A. Skowron, {it Rough sets and boolean reasoning}, Information Sciences, {bf 177} (2007), 41--73. bibitem{P1} Z. Pawlak, {it Rough sets}, Int. J. Inf. Comp. Sci., {bf 11} (1982), 341--356. bibitem{P2} Z. Pawlak, {it Rough sets - theoretical aspects of reasoning about data}, Kluwer Academic Publishing, Dordrecht, 1991. bibitem{R} S. Rasouli and B. Davvaz, {it Roughness in $MV$-algebras}, Information Sciences, {bf 180} (2010), 737--747. bibitem{S} M. H. Shahzamanian, M. Shirmohammadi and B. Davvaz, {it Roughness in Cayley graphs}, Information Sciences, {bf 180} (2010), 3362--3372. bibitem{f} F. I. Sidky, {it On radicals of fuzzy submodules and primary fuzzy submodules}, Fuzzy Sets and Systems, {bf 119} (2001), 419--425. bibitem{S1} B. Sun, Z. Gong and D. Chen, {it Fuzzy rough set theory for the interval-valued fuzzy information systems}, Information Sciences, {bf 178} (2008), 2794--2815. bibitem{S2}B. Sun, Z. Gong and D. Chen, {it Rough set theory for the interval-valued fuzzy information systems}, Information Sciences, {bf 178} (2008), 1968--1985. bibitem{T1} H. Torabi, B. Davvaz and J. Behboodian, {it Fuzzy random events in incomplete probability models}, Journal of Intelligent and Fuzzy Systems, {bf 17(2)} (2006), 183--188. bibitem{T2} H. Torabi, B. Davvaz and J. Behboodian, {it Inclusiveness measurement of random events using rough set theory}, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, {bf 15(4)} (2007), 483--491. bibitem{Y} S. Yamak, O. Kazanc{i} and B. Davvaz, {it Generalized lower and upper approximations in a ring}, Information Sciences, {bf 180} (2010), 1759--1768. bibitem{Z} L. A. Zadeh, {it Fuzzy sets}, Information and Control, {bf 8} (1965), 338--353. | ||
آمار تعداد مشاهده مقاله: 2,560 تعداد دریافت فایل اصل مقاله: 2,200 |