تعداد نشریات | 27 |
تعداد شمارهها | 565 |
تعداد مقالات | 5,815 |
تعداد مشاهده مقاله | 8,126,488 |
تعداد دریافت فایل اصل مقاله | 5,442,491 |
On Existence and Uniqueness of Solution of Fuzzy Fractional Differential Equations | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 12، دوره 10، شماره 6، اسفند 2013، صفحه 137-151 اصل مقاله (305.06 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2013.1336 | ||
نویسنده | ||
S. Arshad ![]() | ||
Comsats Institute of information Technology, Lahore, Pakistan and Ab- dus Salam School of Mathematical Sciences GC University, Lahore, Pakistan | ||
چکیده | ||
The purpose of this paper is to study the fuzzy fractional differential equations. We prove that fuzzy fractional differential equation is equivalent to the fuzzy integral equation and then using this equivalence existence and uniqueness result is establish. Fuzzy derivative is consider in the Goetschel-Voxman sense and fractional derivative is consider in the Riemann Liouville sense. At the end, we give the applications of the main result. | ||
کلیدواژهها | ||
Fuzzy numbers؛ Fuzzy fractional differential equations؛ Goetschel-Voxman fuzzy derivative؛ Cauchy problem؛ Existence and uniqueness result | ||
مراجع | ||
bibitem{fuzzyfac 1}R. P. Agarwal, S. Arshad, D. O'Regan and V. Lupulescu, {it Fuzzy fractional integral equations under compactness type condition}, Fract. Calc. Appl. Anal., {bf15(4)} (2012), 572-590. bibitem{fuzzyfac} R. P. Agarwal, V. Lakshmikantham and J. J. Nieto, textit{ On the concept of solution for fractional differential equations with uncertainty}, Nonlinear Analysis, {bf72} (2010), 2859-2862. bibitem{TSS} T. Allahviranloo, S. Salahshour and S. Abbasbandy, textit{ Explicit solutions of fractional differential equations with uncertainty}, Soft Comput., {bf16} (2012), 297-302. bibitem{LS} S. Arshad and V. Lupulescu,textit{ On the fractional differential equations with uncertainty}, Nonlinear Analysis, {bf74} (2011), 3685-3693. bibitem{SL2} S. Arshad and V. Lupulescu,textit{ Fractional differential equation with fuzzy initial condition}, Electronic Journal of Differential Equations, {textbf{2011}(34)} (2011), 1-8. bibitem{bsg} B. Bede and S. G. Gal,textit{ Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations}, Fuzzy Sets and Systems, {bf151} (2005), 581-599. bibitem{jbf} J. J. Buckley and T. Feuring,textit{ Fuzzy differential equations}, Fuzzy Sets and Systems, {bf110} (2000), 43-54. bibitem{MCXG} M. Chen, C. Wu, X. Xue and G. Liu,textit{ On fuzzy boundary value problems}, Information Sciences, {bf178} (2008), 1877-1892. bibitem{AF} K. Diethelm,textit{ The analysis of fractional differential equations}, Springer, 2004.vspace{0.05cm} bibitem{rg} R. Goetsch Jr. and W. Voxman,textit{ Elementary fuzzy calculus}% , Fuzzy Sets and Systems, {bf18} (1986), 31-43. bibitem{hul} E. Hullermeier,textit{ An approach to modeling and simulation of uncertain dynamical systems}, International Journal of Uncertainty, Fuzziness Knowledge-Bases System, {bf5} (1997), 117-137. bibitem{jjj} D. Junsheng, A. Jianye and Xu Mingyu,textit{ Solution of system of fractional differential equations by adomian decomposition method}, Appl. Math. J. Chinese Univ. Ser. B, {bf22} (2007), 7-12. bibitem{kh} A. Khastan and J.J. Nieto,textit{ A boundary value problem for second order fuzzy differential equations}, Nonlinear Analysis, {bf72} (2010), 3583-3593. bibitem{KST} A. A. Kilbas, H. M. Srivastava and J. J. Trujillo,textit{ Theory and applications of fractional differential equations}, North-Holland Mathematics Studies, Elsevier, New York, NY, USA, {bf204} (2006). bibitem{lak5} V. Lakshmikantham and R. N. Mohapatra,textit{ Theory of fuzzy differential equations and inclusions}, Taylor & Francis, London, 2003. bibitem{16} M. Mazandarani and A. V. Kamyad, {it Modified fractional Euler method for solving fuzzy frac- tional initial value problem}, Commun Nonlinear Sci Numer Simulat, {bf18} (2013), 1221. bibitem{mr} K. S. Miller and B. Ross,textit{ An introduction to fractional calculus and fractional differential equations}, Wiley, New York, 1993. bibitem{miz} M. T. Mizukoshi, L. C. Barros, Y. Chalco-Cano, H. Rom'{a}% n-Flores and R. C. Bassanezi,textit{ Fuzzy differential equations and the extension principle}, Information Sciences, {bf177} (2007), 3627-3635. bibitem{os} K. B. Oldham and J. Spanier,textit{ The frational calculus: theory and application of differentiation and integration to an arbitrary order}, Academic, New York, London, 1974. bibitem{sts} S. Salahshour, T. Allahviranloo and S. Abbasbandy,textit{ Solving fuzzy fractional differential equations by fuzzy Laplace transforms}, Commun Nonlinear Sci Numer Simulat, {bf17} (2012), 1372-1381. bibitem{seik} S. Seikkala,textit{ On the fuzzy initial value problem}, Fuzzy Sets and Systems, {bf24} (1987), 319-330. bibitem{ta} A. J. Turski, B. Atamaniuk and E. Turska,textit{ On the appearance of the fractional derivative in the behavior of real materials}, J. Appl. Mechanics, {bf51} (1984), 294-298. bibitem{dvss} D. Vorobiev and S. Seikkala,textit{ Towards the theory of fuzzy differential equations}, Fuzzy Sets and Systems, {bf125} (2002), 231-237. bibitem{xu} J. Xu, Z. Liao and J. J. Nieto,textit{ A class of linear differential dynamical systems with fuzzy matrices}, Journal of Mathematical Analysis and Applications, {bf368} (2010), 54-68. | ||
آمار تعداد مشاهده مقاله: 3,212 تعداد دریافت فایل اصل مقاله: 2,579 |