تعداد نشریات | 29 |
تعداد شمارهها | 630 |
تعداد مقالات | 6,368 |
تعداد مشاهده مقاله | 9,734,829 |
تعداد دریافت فایل اصل مقاله | 6,365,235 |
Fuzzy projective modules and tensor products in fuzzy module categories | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 8، دوره 11، شماره 2، تیر 2014، صفحه 89-101 اصل مقاله (428.04 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2014.1504 | ||
نویسنده | ||
Hongxing Liu* | ||
School of Mathematical Sciences, Shandong Normal University, 250014, Jinan, P. R. China | ||
چکیده | ||
Let $R$ be a commutative ring. We write $\mbox{Hom}(\mu_A, \nu_B)$ for the set of all fuzzy $R$-morphisms from $\mu_A$ to $\nu_B$, where $\mu_A$ and $\nu_B$ are two fuzzy $R$-modules. We make $\mbox{Hom}(\mu_A, \nu_B)$ into fuzzy $R$-module by redefining a function $\alpha:\mbox{Hom}(\mu_A, \nu_B)\longrightarrow [0,1]$. We study the properties of the functor $\mbox{Hom}(\mu_A,-):FR\mbox{-Mod}\rightarrow FR\mbox{-Mod}$ and get some unexpected results. In addition, we prove that $\mbox{Hom}(\xi_p,-)$ is exact if and only if $\xi_P$ is a fuzzy projective $R$-module, when $R$ is a commutative semiperfect ring. Finally, we investigate tensor product of two fuzzy $R$-modules and get some related properties. Also, we study the relationships between Hom functor and tensor functor. | ||
کلیدواژهها | ||
Fuzzy set؛ Hom functor؛ Fuzzy projective $R$-module؛ Fuzzy $R$-module؛ Tensor product؛ functor | ||
مراجع | ||
\bibitem{Ameri} R. Ameri and M. M. Zahedi, {\it Fuzzy chain complex and fuzzy homotopy}, Fuzzy sets and Systems, {\bf 112} (2000), 287-297. \bibitem{AF} F. W. Anderson and K. R. Fuller, {\it Rings and Categories of Modules}, GTM13, Springer-Verlag, 1974.
\bibitem {Chen} Y. Chen, {\it Projective $S$-acts and exact functors}, Algebra Colloquium, {\bf 7(1)} (2000), 113-120. \bibitem {Gierz} G. Gierz, K. H. Hofmann, and etc., {\it Continuous Lattices and Domains}, Cambridge University Press, 2003. \bibitem {Isaac}P. Isaac, {\it On projective L-modules}, Iranian Journal of Fuzzy Systems, {\bf 2(1)} (2005), 19-28. \bibitem{Lopez} S. R. L\'{o}pez-Permouth, {\it Lifting Morita equivalence to categories of fuzzy modules}, Information Sciences, {\bf 64} (1992), 191-201. \bibitem{LM} S. R. L\'{o}pez-Permouth and D. S. Malik, {\it On categories of fuzzy modules}, Information Sciences, {\bf 52} (1990), 211-220.
\bibitem {Liu} H. Liu, {\it Hom functors and tensor product functors in fuzzy $S$-act category}, Neural Comput. \& Applic., {\bf 21(Suppl 1)} (2012), 275-279. \bibitem {NR} C. V. Negoita and D. A. Ralescu, {\it Applications of fuzzy subsets to system analysis}, Birkhauser, Basel, 1975. \bibitem {Pan-1} F. Pan, {\it Hom functors in the fuzzy category $F_m$}, Fuzzy Sets and Systems, {\bf 103} (1999), 525-528. \bibitem {Pan-2} F. Pan, {\it The two functors in the fuzzy modular category}, Acta Mathematica Scientia, {\bf 21B(4)} (2001), 526-530. \bibitem {Rosen} A. Rosenfeld, {\it Fuzzy groups}, J. Math. Anal. Appl., {\bf 35} (1971), 312-317. \bibitem {Rotman} J. J. Rotman, {\it An introduction to homological algebra}, 2nd ed., Berlin: Springer, 2009. \bibitem {Wyler} O. Wyler, {\it On the categories of general topology and topological algebra}, Arch. der Math., {\bf 22} (1971), 7-17. \bibitem {Zadeh} L. A. Zadeh, {\it Fuzzy sets}, Information and Control, {\bf 8} (1965), 338-353. | ||
آمار تعداد مشاهده مقاله: 2,087 تعداد دریافت فایل اصل مقاله: 1,617 |