تعداد نشریات | 26 |
تعداد شمارهها | 550 |
تعداد مقالات | 5,698 |
تعداد مشاهده مقاله | 7,963,517 |
تعداد دریافت فایل اصل مقاله | 5,347,278 |
SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 6، دوره 9، شماره 1، بهار 2012، صفحه 61-77 اصل مقاله (620.11 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2012.226 | ||
نویسندگان | ||
Mojtaba Eftekhari1؛ Mahdi Eftekhari ![]() | ||
1Faculty of Islamic Azad University, Sirjan branch, ,Sirjan, Ker- man, Iran | ||
2Department of Computer Engineering, School of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran | ||
3Department of Computer Engineering, School of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran | ||
4Department of Electrical Engineering, School of Engi- neering, Shahid Bahonar University of Kerman, Kerman, Iran | ||
چکیده | ||
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level interpretability requirements of fuzzy models is especially a complicated task in case of modeling nonlinear MIMO systems. Due to these multiple and conicting objectives, MOGA is applied to yield a set of candidates as compact, transparent and valid fuzzy models. Also, MOGA is combined with a powerful search algorithm namely Di erential Evolution (DE). In the proposed algorithm, MOGA performs the task of membership function tuning as well as rule base identi cation simultaneously while DE is utilized only for linear parameter identi cation. Practical applicability of the proposed algorithm is examined by two nonlinear system modeling prob- lems used in the literature. The results obtained show the e ectiveness of the proposed method. | ||
کلیدواژهها | ||
Multi-objective؛ Evolutionary؛ Fuzzy identication؛ Compact؛ Inter- pretability | ||
مراجع | ||
[1] J. Abonyi, Fuzzy Model Identication for Control, Birkhauser, Boston, 2003. [2] K. Debs, Multio-bjective optimization Using Evolutionary Algorithms, John Wiley and Son Ltd, 2001. [3] B. L. R. De Moor and ed., DaISy: Database for the Identication of Systems, Department of Electrical Engineering, ESAT/SISTA, K. U. Leuven, Belgium, URL: http://www.esat.kuleuven.ac.be/sista/daisy/. [4] V. De Oliveira, Semantic constraints for membership function optimization, IEEE Trans. SMC-A, 29(1) (1999), 128-138. [5] M. Eftekhari, S. D. Katebi, M. Karimi and A. H. Jahanmiri, Eliciting transparent fuzzy model using dierential evolution, Applied Soft Computing, 8 (2008), 466-476. [6] M. Eftekhari and S. D. Katebi, Extracting compact fuzzy rules for nonlinear system modeling using subtractive clustering, GA and unscented lter, Applied Mathematical Modelling, 32 (2008), 2634-2651. [7] B. Feil, J. Abonyi, J. Madar, S. Nemeth and P. A rva, Identication and analysis of MIMO systems based on clustering algorithm, Acta Agraria Kaposvariensis, 8(3) (2004), 191-203. [8] C. M. Fonseca and P. J. Fleming, Multi-objective optimization and multiple constraint han- dling with evolutionary algorithms-part I: application example, IEEE Trans. Syst. Man and Cybernetics, 28(1) (1998), 26-37. [9] C. M. Fonseca and P. J. Fleming, Multi-objective optimization and multiple constraint han- dling with evolutionary algorithms-part II: a unied formulation, IEEE Trans. Syst. Man and Cybernetics, 28(1) (1998), 38-47. [10] M. J. Gacto, R. Alcala and F. Herrera, Integration of an Index to Preserve the Semantic Interpretability in the Multiobjective Evolutionary Rule Selection and Tuning of Linguistic Fuzzy Systems, IEEE Transactions on Fuzzy Systems, 8(3) (2010), 515-531. [11] S. Y. Ho, H. M. Chen, S. J. Ho and T. K. Cehn, Design of accurate classiers with a compact fuzzy rule base using an evolutionary scatter partition of feature space, IEEE Tans. Systems, Man and Cybernetics, Part B: Cybernetics, 34(2) (2004), 1031-1044. [12] W. H. Ho, J. H. Chou and C. Y. Guo, Parameter identication of chaotic systems using improved dierential evolution algorithm, Nonlinear Dynamics, 61 (2010), 29-41. [13] A. Homaifar and E. McCormick, Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms, IEEE Trans. Fuzzy Syst., 3 (1995), 129-139. [14] H. Ishibuchi, Multiobjective genetic fuzzy systems: Review and future research directions, Proc. of IEEE InternationalConference on Fuzzy Systems, London, UK, July 23-26, (2007) 913-918. [15] C. Z. Janikow, A knowledge intensive genetic algorithm for supervised learning, Machine Learning, 13 (1993), 198-228. [16] L. Ljung, System identication toolbox: user's guide, The MathWorks, 2004. [17] S. Medasani, J. Kim and R. Krishnapuram, An overview of membership function generation techniques for pattern recognition, Int. J. Approx. Reasoning, 19(3-4) (1998), 391-417. [18] O. Nelles, Nonlinear System Identication, Springer-Verlag, Berlin Heidelberg, 2001. [19] A. Riid and E. Rustern, Interpretability improvement of fuzzy systems: reducing the number of unique singletons in zeroth order Takagi-Sugeno systems, Proceedings of (2010) IEEE International Conference on Fuzzy Systems, Barcelona, Spain, (2010), 2013-2018. [20] K. Rodriguez-vazquez, Multiobjective evolutionary algorithms in non-linear system identi- cation. PhD thesis, Department of Automatic Control and Systems Engineering, The Uni- versity of Sheeld, 1999. [21] R. Storn and K. Price, Dierential evolution-a simple and ecient adaptive scheme or global optimization over continuous spaces, technical report TR-95-012, International Computer Science Institute, Berkley, 1995. [22] R. Storn and K. Price, Dierential evolution a simple and ecient heuristic for global opti- mization over continuous spaces, J. Global Optim. 11 (1997), 341-359. [23] J. T. Tsai, J. H. Chou and T. K. Liu, Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm, IEEE Trans. on Neural Networks, 17 (2006), 69-80. [24] H. Wang, S. Kwong, Y. Jin, W. Wei, and K. F. Man, Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction, Fuzzy Sets and Systems, 149 (2005), 149-186. [25] H.Wang, S. Kwong, Y. Jin, W.Wei and K. F. Man, Agent-based evolutionary approach for in- terpretable rule-based knowledge extraction, IEEE Trans. on Systems, Man and Cybernetics- Part C, 35 (2005), 143-155. [26] S. M. Zhou and J. Q. Gan, Low-level interpretability and high-level interpretability: a unied view of data-driven interpretable fuzzy system modeling, Fuzzy Sets and Systems, 159 (2008), 3091-3131. [27] S. M. Zhou and J. Q. Gan, Extracting Takagi-Sugeno fuzzy rules with interpretable sub- models via regularization of linguistic modiers, IEEE Transactions on Knowledge and Data Engineering, 21(8) (2009), 1191-1204. | ||
آمار تعداد مشاهده مقاله: 2,660 تعداد دریافت فایل اصل مقاله: 2,015 |