تعداد نشریات | 27 |
تعداد شمارهها | 565 |
تعداد مقالات | 5,815 |
تعداد مشاهده مقاله | 8,130,356 |
تعداد دریافت فایل اصل مقاله | 5,443,926 |
Solving fuzzy differential equations by using Picard method | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 6، دوره 13، شماره 3، شهریور 2016، صفحه 71-81 اصل مقاله (384.09 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2016.2430 | ||
نویسندگان | ||
S. S. Behzadi* 1؛ T. Allahviranloo2 | ||
1Department of Mathematics, Islamic Azad University, Qazvin Branch Qazvin Iran | ||
2Department of Mathematics, Islamic Azad University, Science and Research Branch, Tehran Iran | ||
چکیده | ||
In this paper, The Picard method is proposed to solve the system of first-order fuzzy differential equations $(FDEs)$ with fuzzy initial conditions under generalized $H$-differentiability. The existence and uniqueness of the solution and convergence of the proposed method are proved in details. Finally, the method is illustrated by solving some examples. | ||
کلیدواژهها | ||
First order fuzzy differential equations؛ Fuzzy number؛ Fuzzy-valued function؛ $h$-difference؛ Generalized differentiability؛ Picard method | ||
مراجع | ||
[1] S. Abbasbandy and T. Allahviranloo, Numerical solutions of fuzzy dierential equations by Taylor method, J. Comput. Meth. Appl. Math., 2 (2002), 113-124. [2] S. Abbasbandy, T. Allahviranloo, O. Lopez-Pouso and J. J. Nieto, Numerical methods for fuzzy dierential inclusions, Comput. Math. Appl., 48 (2004), 1633-1641. [3] S. Abbasbandy, J. J. Nieto and M. Alavi, Tuning of reachable set in one dimensional fuzzy dierential inclusions, Chaos Soliton and Fractals., 26 (2005), 1337-1345. [4] T. Allahviranloo, N. Ahmady and E. Ahmady, Numerical solution of fuzzy dierential equa- tions by predictorcorrector method, Inform. Sci., 177 (2007), 1633-1647. [5] B. Bede, Note on Numerical solutions of fuzzy dierential equations by predictorcorrector method, Inform. Sci., 178 (2008), 1917-1922. [6] B. Bede and S. G. Gal, Generalizations of the dierentiability of fuzzy number valued func- tions with applications to fuzzy dierential equation, Fuzzy Set.Syst., 151 (2005), 581-599. [7] B. Bede, J. Imre, C. Rudas and L. Attila, First order linear fuzzy dierential equations under generalized dierentiability, Inform. Sci., 177 (2007), 3627-3635. [8] J. J. Buckley and T. Feuring, Fuzzy dierential equations, Fuzzy Set. Syst., 110 (2000), 43-54. [9] J.J. Buckley, T. Feuring and Y. Hayashi, Linear systems of rst order ordinary dierential equations: fuzzy initial conditions, Soft Comput., 6 (2002), 415-421. [10] J. J. Buckley and L. J. Jowers, Simulating Continuous Fuzzy Systems, Springer-Verlag, Berlin Heidelberg, 2006. [11] Y. Chalco-Cano and H. Romn-Flores,On new solutions of fuzzy dierential equations, Chaos Soliton and Fractals., 45 (2006), 1016-1043. [12] Y. Chalco-Cano, Romn-Flores, M. A. Rojas-Medar, O. Saavedra and M. Jimnez-Gamero, The extension principle and a decomposition of fuzzy sets, Inform. Sci., 177 (2007), 5394-5403. [13] C. K. Chen and S. H. Ho,Solving partial dierential equations by two-dimensional dierential transform method, Appl. Math. Comput., 106 (1999), 171-179. [14] Y. J. Cho and H. Y. Lan, The existence of solutions for the nonlinear rst order fuzzy dierential equations with discontinuous conditions, Dyn. Contin.Discrete., 14 (2007) , 873- 884. [15] W. Congxin and S. Shiji,Exitance theorem to the Cauchy problem of fuzzy dierential equa- tions under compactance-type conditions, Inform. Sci., 108 (1993), 123-134. [16] P. Diamond, Time-dependent dierential inclusions, cocycle attractors and fuzzy dierential equations, IEEE Trans. Fuzzy Syst., 7 (1999), 734-740. [17] P. Diamond, Brief note on the variation of constants formula for fuzzy dierential equations, Fuzzy Set. Syst., 129 (2002), 65-71. [18] Z. Ding, M. Ma and A. Kandel, Existence of solutions of fuzzy dierential equations with parameters, Inform. Sci., 99 (1997), 205-217. [19] D. Dubois and H. Prade, Towards fuzzy dierential calculus: Part 3, dierentiation, Fuzzy Set. Syst., 8 (1982), 225-233. [20] O. S. Fard, Z. Hadi, N. Ghal-Eh and A. H. Borzabadi,A note on iterative method for solving fuzzy initial value problems, J. Adv. Res. Sci. Comput., 1 (2009), 22-33. [21] O. S. Fard, A numerical scheme for fuzzy cauchy problems, J. Uncertain Syst., 3 (2009), 307-314. [22] O. S. Fard, An iterative scheme for the solution of generalized system of linear fuzzy dier- ential equations, World Appl. Sci. J., 7 (2009), 1597-1604. [23] O. S. Fard and A. V. Kamyad, Modied k-step method for solving fuzzy initial value problems, Iranian Journal of Fuzzy Systems, 8(1) (2011), 49-63. [24] O. S. Fard, T. A. Bidgoli and A. H. Borzabadi, Approximate-analytical approach to nonlinear FDEs under generalized dierentiability, J. Adv. Res. Dyn. Control Syst., 2 (2010), 56-74. [25] W. Fei,Existence and uniqueness of solution for fuzzy random dierential equations with non-Lipschitz coecients, Inform. Sci., 177 (2007), 329-4337. [26] M. J. Jang and C. L. Chen, Y.C. Liy,On solving the initial-value problems using the dier- ential transformation method, Appl. Math. Comput., 115 (2000), 145- 160. [27] L. J. Jowers, J. J. Buckley and K. D. Reilly, Simulating continuous fuzzy systems, Inform. Sci., 177 (2007), 436-448. [28] O. Kaleva, Fuzzy dierential equations, Fuzzy Set. Syst., 24 (1987), 301-317. [29] O. Kaleva, The Cauchy problem for fuzzy dierential equations, Fuzzy Set. Syst., 35 (1990), 389-396. [30] O. Kaleva, A note on fuzzy dierential equations, Nonlinear Anal.,64 (2006) 895-900. [31] R. R. Lopez, Comparison results for fuzzy dierential equations, Inform. Sci., 178 (2008), 1756-1779. [32] M. Ma, M. Friedman and A. Kandel, Numerical solutions of fuzzy dierential equations, Fuzzy Set. Syst., 105 (1999), 133-138. [33] M. T. Mizukoshi, L. C. Barros, Y. Chalco-Cano, H. Romn-Flores and R. C. Bassanezi, Fuzzy dierential equations and the extension principle, Inform. Sci., 177(2007) , 3627-3635. [34] M. Oberguggenberger and S. Pittschmann,Dierential equations with fuzzy parameters, Math. Mod. Syst., 5 (1999), 181-202. [35] G. Papaschinopoulos, G. Stefanidou and P. Efraimidi, Existence uniqueness and asymptotic behavior of the solutions of a fuzzy dierential equation with piecewise constant argument, Inform. Sci., 177 (2007), 3855-3870. [36] M. L. Puri and D. A. Ralescu, Dierentials of fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552-558. [37] M. L. Puri and D. Ralescu, Fuzzy random variables, J. Math. Anal. Appl., 114 (1986), 409{422. [38] H. J. Zimmermann, Fuzzy sets theory and its applications, Kluwer Academic Press, Dor- drecht, 1991. | ||
آمار تعداد مشاهده مقاله: 1,293 تعداد دریافت فایل اصل مقاله: 1,854 |