تعداد نشریات | 29 |
تعداد شمارهها | 630 |
تعداد مقالات | 6,368 |
تعداد مشاهده مقاله | 9,734,142 |
تعداد دریافت فایل اصل مقاله | 6,365,057 |
CREDIBILISTIC PARAMETER ESTIMATION AND ITS APPLICATION IN FUZZY PORTFOLIO SELECTION | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 4، دوره 8، شماره 2، شهریور 2011، صفحه 57-65 اصل مقاله (337.5 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2011.276 | ||
نویسندگان | ||
Xiang Li1؛ Zhongfeng Qin2؛ Dan Ralescu* 3 | ||
1The State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China | ||
2School of Economics and Management, Beihang University, Beijing 100191, China | ||
3Department of Mathematical Sciences, University of Cincinnati, Cincin- nati, Ohio 45221, USA | ||
چکیده | ||
In this paper, a maximum likelihood estimation and a minimum entropy estimation for the expected value and variance of normal fuzzy variable are discussed within the framework of credibility theory. As an application, a credibilistic portfolio selection model is proposed, which is an improvement over the traditional models as it only needs the predicted values on the security returns instead of their membership functions. | ||
کلیدواژهها | ||
Normal fuzzy variable؛ Credibility theory؛ Condence interval؛ Point estimation؛ Portfolio selection | ||
مراجع | ||
[1] A. R. Arabpour and M. Tata, Estimating the parameters of a fuzzy linear regression model, Iranian Journal of Fuzzy Systems, 5(2) (2008), 1-20. [2] K. Cai, Parameter estimations of normal fuzzy variables, Fuzzy Sets and Systems, 55 (1993), 179-185. [3] H. Dishkant, About membership functions estimation, Fuzzy Sets and Systems, 5 (1981), 141-147. [4] D. Dubois and H. Prade, Possibility theory: an approach to computerized processing of un- certainty, Plenum, New York, 1998. [5] H. Hassanpour, H. R. Maleki and M. A. Yaghoobi, A note on evaluation of fuzzy linear regression models by comparing membership functions, Iranian Journal of Fuzzy Systems, 6(2) (2009), 1-6. [6] X. Huang, Portfolio selection with fuzzy returns, Journal of Intelligent & Fuzzy Systems, 18(4) (2007), 383-390. [7] M. Javadian, Y. Maali and N. Mahdavi-Amiri, Fuzzy linear programming with grades of satisfaction in constraints, 6(3) (2009), 17-35. [8] X. Li and B. Liu, A sucient and necessary condition for credibility measures, International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems, 14(5) (2006), 527-535. [9] X. Li and B. Liu, Maximum entropy principle for fuzzy variables, International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems, 15(Supp.2) (2007), 43-52. [10] X. Li, Z. Qin and S. Kar, Mean-variance-skewness model for portfolio selection with fuzzy parameter, European Journal of Operational Research, 202(1) (2010), 239-247. [11] P. Li and B. Liu, Entropy of credibility distributions for fuzzy variables, IEEE Transactions on Fuzzy Systems, 16(1) (2008), 123-129. [12] B. Liu, Uncertainty theory, 2nd ed., Springer-Verlag, Berlin, 2007. [13] B. Liu and Y. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on Fuzzy Systems, 10(4) (2002), 445-450. [14] H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. [15] S. Nahmias, Fuzzy variables, Fuzzy Sets and Systems, 1 (1978), 97-110. [16] Z. Qin, X. Li and X. Ji, Portfolio selection based on fuzzy cross-entropy, Journal of Compu- tational and Applied Mathematics, 228(1) (2009), 139-149. [17] D. Ralescu, Toward a general theory of fuzzy variables, Journal of Mathematical Analysis and Applications, 86 (1982), 176-193. [18] M. Sugeno, Theory of fuzzy integrals and its applications, PhD. Thesis, Tokyo Institute of Technology, 1974. [19] L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 1 (1978), 3-28. | ||
آمار تعداد مشاهده مقاله: 2,480 تعداد دریافت فایل اصل مقاله: 1,264 |