تعداد نشریات | 26 |
تعداد شمارهها | 550 |
تعداد مقالات | 5,697 |
تعداد مشاهده مقاله | 7,962,075 |
تعداد دریافت فایل اصل مقاله | 5,346,054 |
ROBUSTNESS OF THE TRIPLE IMPLICATION INFERENCE METHOD BASED ON THE WEIGHTED LOGIC METRIC | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 9، دوره 14، شماره 6، زمستان 2017، صفحه 135-148 اصل مقاله (399.39 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2017.3502 | ||
نویسندگان | ||
Jun Li ![]() | ||
School of Science, Lanzhou University of Technology, Lanzhou 730050, Gansu, China | ||
چکیده | ||
This paper focuses on the robustness problem of full implication triple implication inference method for fuzzy reasoning. First of all, based on strong regular implication, the weighted logic metric for measuring distance between two fuzzy sets is proposed. Besides, under this metric, some robustness results of the triple implication method are obtained, which demonstrates that the triple implication method possesses a good behavior of robustness. | ||
کلیدواژهها | ||
Robustness؛ Triple implication method؛ Weighted logic metric؛ Weighted logic similarity degree؛ Fuzzy reasoning | ||
مراجع | ||
[1] R. Belohlavek, Fuzzy Relational Systems, Foundations and Principles, Kluwer Academic Publishers, Dordrecht, (2002), 40-116. [2] K. Y. Cai, -equalities of fuzzy sets, Fuzzy Sets and Systems, 76(1) (1995), 97-112. [3] K. Y. Cai, Robustness of fuzzy reasoning and -equalities of fuzzy sets, IEEE Transactions on Fuzzy Systems, 9(5) (2001), 738-750. [4] G. S. Cheng and Y. X. Fu, Error estimation of perturbations under CRI, IEEE Transactions on Fuzzy Systems, 14(6) (2006), 709-715. [5] S. S. Dai, D. W. Pei and S. M. Wang, Perturbation of fuzzy sets and fuzzy reasoning based on normalized Minkowski distances, Fuzzy Sets and Systems, 189 (2012), 63-73. [6] S. S. Dai, D. W. Pei and D. H. Guo, Robustness analysis of full implication inference method, International Journal of Approximate Reasoning, 54(5) (2013), 653-666. [7] D. Dubois, J. Lang and H. Prade, Fuzzy sets in approximate reasoning, parts 1 and 2, Fuzzy Sets and Systems, 40(1) (1991), 143-244. [8] P. Hajek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, (1998), 27-29. [9] D. H. Hong and S. Y. Hwang, A note on the value similarity of fuzzy systems variables, Fuzzy Sets and Systems, 66(3) (1994), 383-386. [10] E. P. Klement, R. Mesiar and E. Pap, Triangular Norms, Kluwer Academic Publishers, Dordrecht, (2000), 4-6. [11] J. Li and J. T. Yao, Theory of integral truth degrees of formula in SMTL propositional logic, Acta Electronica Sinica, 41(5) (2013), 878-883. [12] Y. M. Li, D. C. Li, W. Pedrycz and J. J. Wu, An approach to measure the robustness of fuzzy reasoning, International Journal of Intelligent Systems, 20(4) (2005), 393-413. [13] H. W. Liu and G. J. Wang, Continuity of triple I methods based on several implications, Computers and Mathematics with Applications, 56(8) (2008), 2079-2087. [14] H. W. Liu and G. J. Wang, A note on the unied forms of triple I method, Computers and Mathematics with Applications, 52(10) (2006), 1609-1613. [15] H. W. Liu and G. J. Wang, Unied forms of fully implicational restriction methods for fuzzy reasoning, Information Sciences, 177(3) (2007), 956-966. [16] H. W. Liu and G. J. Wang, Triple I method based on pointwise sustaining degrees, Computers and Mathematics with Applications, 55(11) (2008), 2680-2688. [17] M. X. Luo and N. Yao, Triple I algorithms based on Schweizer- Sklar operators in fuzzy reasoning, International Journal of Approximate Reasoning, 54(5) (2013), 640-652. [18] C. P. Pappis, Value approximation of fuzzy systems variables, Fuzzy Sets and Systems, 39(1) (1991), 111-115. [19] D. W. Pei, Unied full implication algorithms of fuzzy reasoning, Information Sciences, 178(2) (2008), 520-530. [20] G. J. Wang, Non-classical Mathematical Logic and Approximate Reasoning, second ed., Sci- ence Press, Beijing, China, (2008), 155-165. [21] G. J.Wang, Introduction to Mathematical Logic and Resolution Principle, second ed., Science Press, Beijing, China, (2006), 160-162. [22] G. J. Wang and H. Wang, Non-fuzzy versions of fuzzy reasoning in classical logics, Informa- tion Sciences, 138 (2001), 211-236. [23] G. J. Wang and J. Y. Duan, On robustness of the full implication triple I inference method with respect to ner measurements, International Journal of Approximate Reasoning, 55(3) (2014),787-796. [24] S. W. Wang and W. X. Zheng, Real Variable Function and Functional Analysis, Higher Education Press, Beijing, China, (2005), 4-5. [25] G. J. Wang, The full implication triple I method of fuzzy reasoning, SCIENCE CHINA Ser. E 29 (1999), 43-53. [26] G. J. Wang and J. Y. Duan, Two types of fuzzy metric spaces suitable for fuzzy reasoning, Science China Information Sciences, 44(5) (2014), 623-632. [27] G. J. Wang and L. Fu, Unied forms of triple I method, Computers and Mathematics with Applications, 49(5) (2005), 923-932. [28] G. J. Wang, Formalized theory of general fuzzy reasoning, Information Sciences, 160(1) (2004), 251-266. [29] R. R. Yager, On some new classes of implication operators and their role in approximate reasoning, Information Sciences, 167(1-4) (2004), 193-216. [30] M. S. Ying, Perturbation of fuzzy reasoning, IEEE Transactions on Fuzzy Systems, 7(5) (1999), 625-629. [31] L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems Man and Cybernetics, 3(1) (1973), 28-33. | ||
آمار تعداد مشاهده مقاله: 394 تعداد دریافت فایل اصل مقاله: 317 |