تعداد نشریات | 26 |
تعداد شمارهها | 550 |
تعداد مقالات | 5,698 |
تعداد مشاهده مقاله | 7,966,981 |
تعداد دریافت فایل اصل مقاله | 5,349,917 |
FUZZY RISK ANALYSIS BASED ON A NEW METHOD FOR RANKING GENERALIZED FUZZY NUMBERS | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 8، دوره 15، شماره 3، مرداد و شهریور 2018، صفحه 117-139 اصل مقاله (636.62 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2018.3953 | ||
نویسندگان | ||
Wen Jiang ![]() | ||
1School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China | ||
2Infrared Detection Technology Research & Development Center, Shanghai Institute of Spaceflight Control Technology, CASC, Shanghai, China | ||
3Shanghai Institute of Spaceflight Control Technology, Shanghai, China | ||
چکیده | ||
Fuzzy risk analysis, as a powerful tool to address uncertain information, can provide an appropriate method for risk analysis. However, the previous fuzzy risk analysis methods still have some weaknesses. To overcome the weaknesses of existing fuzzy risk analysis methods, a novel method for ranking generalized fuzzy numbers is proposed for addressing fuzzy risk analysis problems. In the proposed method, a new value of ranking score is obtained based on ordered weighted averaging (OWA) operator. The proposed method takes into consideration of the different importance of the three scoring factors defuzzified value, height and spread. Comparing to some existing methods, the new method can get more reasonable results in some situations. | ||
کلیدواژهها | ||
Fuzzy risk analysis؛ Generalized fuzzy numbers؛ Defuzzified value؛ OWA؛ Ranking fuzzy numbers؛ Ranking score | ||
مراجع | ||
[1] B. S. Ahn, Compatible weighting method with rank order centroid: Maximum entropy ordered weighted averaging approach, Eur. J. Oper. Res., 212(3) (2011), 552–559. [2] E. Akyar, H. Akyar and S. A. D¨uzce, Fuzzy risk analysis based on a geometric ranking method for generalized trapezoidal fuzzy numbers, J. Intell. Fuzzy Syst., 25(1) (2013), 209–217. [3] L. Aliahmadipour and E. Eslami, GHFHC: Generalized hesitant fuzzy hierarchical clustering algorithm, Int. J. Intell. Syst., 31(9) (2016), 855–871. [4] I. M. Aliev and Z. Kara, Fuzzy system reliability analysis using time dependent fuzzy set, Control Cybern., 33(4) (2004), 653–662. [5] S. Aytar, Order intervals in the metric space of fuzzy numbers, Iranian Journal of Fuzzy Systems, 12(5) (2015), 139–147. [6] A. S. A. Bakar and A. Gegov, Ranking of fuzzy numbers based on centroid point and spread, J. Intell. Fuzzy Syst., 27(3) (2014), 1179–1186. [7] S. J. Chen and S. M. Chen, Fuzzy risk analysis based on the ranking of generalized trapezoidal fuzzy numbers, Appl. Intell., 26(1) (2007), 1–11. [8] S. M. Chen and J. H. Chen, Fuzzy risk analysis based on ranking generalized fuzzy numbers with different heights and different spreads, Expert. Syst. Appl., 36(3) (2009), 6833–6842. [9] S. M. Chen, A. Munif, G. S. Chen, H. C. Liu and B. C. Kuo, Fuzzy risk analysis based on ranking generalized fuzzy numbers with different left heights and right heights, Expert Syst. Appl., 39(7) (2012), 6320 – 6334. [10] S. M. Chen and K. Sanguansat, Analyzing fuzzy risk based on a new fuzzy ranking method between generalized fuzzy numbers, Expert Syst. Appl., 38 (2011), 2163 – 2171. [11] C. C. Chou, A generalized similarity measure for fuzzy numbers, J. Intell. Fuzzy Syst., 30(2) (2016), 1147–1155. [12] T. C. Chu and C. T. Tsao, Ranking fuzzy numbers with an area between the centroid point and original point, Comput. Math. Appl., 43 (2002), 111–117. [13] X. Deng, D. Han, J. Dezert, Y. Deng and Y. Shyr, Evidence combination from an evolutionary game theory perspective, IEEE T. Cybernetics, 46(9) (2016), 2070–2082. [14] X. Deng, W. Jiang and J. Zhang, Zero-sum matrix game with payoffs of Dempster- Shafer belief structures and its applications on sensors, Sensors, Article ID 922, DOI:10.3390/s17040922, 17(4) (2017), 1-22. [15] X. Deng, F. Xiao and Y. Deng, An improved distance-based total uncertainty measure in belief function theory, Appl. Intell., 46(4) (2017), 898–915. [16] Y. Deng, Deng entropy, Chaos Soliton. Fract., 91 (2016), 549–553. [17] D. S. Dinagar and A. Anbalagan, A new similarity measure between type-2 fuzzy numbers and fuzzy risk analysis, Iranian Journal of Fuzzy Systems, 10(5) (2013), 79–95. [18] A. Ebrahimnejad and J. L. Verdegay, An efficient computational approach for solving type-2 intuitionistic fuzzy numbers based transportation problems, Int. J. Comput. Int. Sys., 9(6) (2016), 1154–1173. [19] Y. B. Gong, L. L. Dai and N. Hu, Multi-attribute decision making method based on Bonferroni mean operator and possibility degree of interval type-2 tarpezoidal fuzzy sets, Iranian Journal of Fuzzy Systems, 13(5) (2016), 97–115. [20] T. Hajjari, Fuzzy risk analysis based on ranking of fuzzy numbers via new magnitude method, Iranian Journal of Fuzzy Systems, 12(3) (2015), 17–29. [21] W. Jiang, S. Wang, X. Liu, H. Zheng and B. Wei, Evidence conflict measure based on owa operator in open world, PloS one, 12(5) (2017), 1–18, e0177,828. [22] W. Jiang, B. Wei, Y. Tang and D. Zhou, Ordered visibility graph average aggregation operator: An application in produced water management, Chaos, Article ID 023,117, DOI:10.1063/1.4977186, 27(2) (2017), 1-10. [23] W. Jiang, B. Wei, J. Zhan, C. Xie and D. Zhou, A visibility graph power averaging aggregation operator: A methodology based on network analysis, Comput. Ind. Eng., DOI:10.1016/j.cie.2016.09.009, 101 (2016), 260–268. [24] W. Jiang and S.Wang, An uncertainty measure for interval-valued evidences, Int. J. Comput. Commun., 12(5) (2017), 631–644. [25] W. Jiang, C. Xie, M. Zhuang, Y. Shou and Y. Tang, Sensor data fusion with Z-numbers and its application in fault diagnosis, Sensors, Article ID 1509, DOI:10.3390/s16091509, 16(9) (2016), 1–22. [26] W. Jiang, C. Xie, M. Zhuang and Y. Tang, Failure mode and effects analysis based on a novel fuzzy evidential method, Appl.Soft Comput., DOI: http://dx.doi.org/doi:10.1016/j.asoc.2017.04.008, 57 (2017), 672–683, [27] W. Jiang and J. Zhan, A modified combination rule in generalized evidence theory, Appl. Intell., DOI:10.1007/s10489-016-0851-6, 46(3) (2017), 630–640. [28] B. Kang, Y. Hu, Y. Deng and D. Zhou, A New Methodology of Multicriteria Decision-Making in Supplier Selection Based on Z-Numbers, Math. Probl. Eng., DOI:10.1155/2016/8475987, 2016(1) (2016), 1-17. [29] J. Kerr-Wilson and W. Pedrycz, Some new qualitative insights into quality of fuzzy rule-based models, Fuzzy Set. Syst., 307 (2017), 29–49. [30] L. Kovarova and R. Viertl, The generation of fuzzy sets and the construction of characterizing functions of fuzzy data, Iranian Journal of Fuzzy Systems, 12(6) (2015), 1–16. [31] K. U. Madhuri, S. S. Babu and N. R. Shankar, Fuzzy risk analysis based on the novel fuzzy ranking with new arithmetic operations of linguistic fuzzy numbers, J. Intell. Fuzzy Syst., 26(5) (2014), 2391–2401. [32] A. M. Nejad and M. Mashinchi, Ranking fuzzy numbers based on the areas on the left and the right sides of fuzzy number, Comput. Math. Appl., 61(2) (2011), 431–442. [33] M. T. Nouei, A. V. Kamyad, M. R. Sarzaeem and S. Ghazalbash, Fuzzy risk assessment of mortality after coronary surgery using combination of adaptive neuro-fuzzy inference system and K-means clustering, Expert Syst., 33(3) (2016), 230–238. [34] M. O’Hagan, Aggregating template or rule antecedents in real-time expert systems with fuzzy set logic, In: in proc. 22nd Annu. IEEE Asilomar Conf. Signals, Systems, Computers, Pacific Grove, CA, 2(2) (1988), 681–689. [35] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, 20(1) (1976), 106-106. [36] M. Shamsizadeh and M. M. Zahedi, Intuitionistic general fuzzy automata, Soft Comput., 20(9) (2016), 3505–3519. [37] G. P. Silveira and L. C. D. Barros, Analysis of the dengue risk by means of a Takagi-Sugenostyle model, Fuzzy Set. Syst., 277(C) (2015), 122–137. [38] E. B. Smith and R. Langari, Fuzzy multiobjective decision making for navigation of mobile robots in dynamic, unstructured environments, J. Intell. Fuzzy Syst., 14(2) (2003), 95–108. [39] J. Wang, Y. Hu, F. Xiao, X. Deng and Y. Deng, A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis, Artif. Intell. Med., 69 (2016), 1–11. [40] Y. J. Wang, Ranking triangle and trapezoidal fuzzy numbers based on the relative preference relation, Appl. Math. Model., 39(2) (2014), 586–599. [41] Y. M. Wang, J. B. Yang, D. L. Xu and K. S. Chin, On the centroids of fuzzy numbers, Fuzzy Set. Syst., 157(7) (2006), 919–926. [42] S. H.Wei and S. M. Chen, Fuzzy risk analysis based on interval-valued fuzzy numbers, Expert. Syst. Appl., 36(2) (2009), 2285–2299. [43] D. Wu, X. Liu, F. Xue, H. Zheng, Y. Shou and W. Jiang, A new medical diagnosis method based on Z-numbers, Appl. Intell., DOI:10.1007/s10489-017-1002-4, 2017(1) (2017), 1–14. [44] R. R. Yager, Ranking fuzzy subsets over the unit interval, IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes, (1978), 1435–1437. [45] R. R. Yager, On ordered weighted averaging aggregation operators in multicriteria decisionmaking, IEEE T. Syst. Man. CY-S., 18(1) (1988), 183–190. [46] V. F. Yu, H. T. X. Chi, L. Q. Dat, P. N. K. Phuc and C. W. Shen, Ranking generalized fuzzy numbers in fuzzy decision making based on the left and right transfer coefficients and areas, Appl. Math. Model., 37(16-17) (2013), 8106–8117. [47] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. [48] L. A. Zadeh, A note on Z-numbers, Inform. Sciences, 181(14) (2011), 2923–2932. [49] R. Zhang, X. Ran, C. Wang and Y. Deng, Fuzzy evaluation of network vulnerability, Qual. Reliab. Eng. Int., 32(5) (2016), 1715–1730. [50] X. Zhang, Y. Deng, F. T. S. Chan, A. Adamatzky and S. Mahadevan, Supplier selection based on evidence theory and analytic network process, P. I. Mech. Eng. B-J. Eng., 230(3) (2016), 562–573 | ||
آمار تعداد مشاهده مقاله: 1,079 تعداد دریافت فایل اصل مقاله: 504 |